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JAN MAAS AND JAN VAN NEERVEN

Abstract. We extend to infinite dimensions an explicit formula of Chill,
Fašangová, Metafune, and Pallara [2] for the optimal angle of analyticity of
analytic Ornstein-Uhlenbeck semigroups. The main ingredient is an abstract
representation of the Ornstein-Uhlenbeck operator in divergence form.

1. Introduction

It is well known that a uniformly elliptic operator of the form

(1.1) Lf(x) = 1
2

n
∑

i,j=1

qijDijf(x) +

n
∑

i=1

bi(x)Dif(x), x ∈ R
n,

where Q = (qij) is a real, symmetric, and strictly positive definite matrix, may fail
to generate an analytic semigroup on Lp(Rn) for all 1 6 p < ∞ if the first order
coefficients bi are unbounded. Let us consider the simplest case of linear coefficients

(1.2) bi(x) =

n
∑

j=1

aijxj ,

where A = (aij) is a real matrix all of whose eigenvalues lie in the open left-half
plane {z ∈ C : Re z < 0}. In this situation L is called the Ornstein-Uhlenbeck
operator associated with Q and A. It has been shown recently by Metafune [11]
that this operator is closable as an operator on Lp(Rn) with initial domain C2

c (Rn)
and that the spectrum of its closure, also denoted by L, equals

σ(L) = {z ∈ C : Re z 6 −tr(A)/p}.

By standard results from semigroup theory, this prevents L from generating an
analytic semigroup on Lp(Rn).

The assumption σ(A) ⊆ {z ∈ C : Re z < 0} implies the convergence of the
integral

Q∞ =

∫

∞

0

etAQetA∗

dt,
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and the centred Gaussian measure µ∞ on Rn whose covariance matrix equals Q∞

is an invariant measure for L, in the sense that
∫

Rn

Lf dµ∞ = 0, f ∈ D(L).

The realization of L in the space Lp(Rn, µ∞) behaves much better, at least for
1 < p < ∞. Indeed, for these values of p it is well known [5, 10, 6] that L generates
an analytic C0-semigroup on Lp(Rn, µ∞). In a recent paper by Chill, Fašangová,
Metafune and Pallara [2], the sector of analyticity of the semigroup P = (P (t))t>0

generated by L was computed explicitly: it was shown that P is an analytic C0-
contraction semigroup on the sector

Σθp
:= {reiφ ∈ C : r > 0, |φ| < θp}.

where

cot θp =

√

(p − 2)2 + p2γ2

2
√

p − 1

and γ is a constant depending on Q and A. Moreover, the authors proved that the
above sector is optimal. An extension of this result to nonsymmetric submarkovian
semigroups was subsequently obtained by the same authors [3].

The purpose of this paper is to extend the results of [2] to analytic Ornstein-
Uhlenbeck semigroups in infinite dimensions and removing the nondegeneracy as-
sumption on Q (see Theorems 3.4 and 3.5 below). As is well known, for degenerate
Q the Ornstein-Uhlenbeck semigroup may fail to be analytic in Lp(E, µ∞) even in
finite dimensions. An explicit example was given by Fuhrman [5]; see also [6, 8].
Our extension is based on a characterization of analyticity of Ornstein-Uhlenbeck
semigroups obtained recently by Goldys and the second-named author [8] (Proposi-
tion 2.1). It allows us to obtain a representation of L in divergence form (Theorem
2.3), which we believe is the main new contribution of this paper. It is the key
step in extending the arguments of the paper [2] to the infinite-dimensional setting
which we shall describe next.

Throughout the paper, E is a real Banach space and Q ∈ L (E∗, E) is a posi-
tive symmetric operator. That is, we assume that 〈Qx∗, x∗〉 > 0 and 〈Qx∗, y∗〉 =
〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗. The reproducing kernel Hilbert space (RKHS) associ-
ated with Q will be denoted by H and the canonical inclusion mapping H →֒ E by
i. We refer to [12] for more details. Whenever this is convenient, we shall identify
H with its image i(H) in E.

If A is the generator of a C0-semigroup S = (S(t))t>0 on E, for t > 0 we may
consider the positive symmetric operators Qt ∈ L (E∗, E) defined by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗.

The integrand is easily seen to be strongly measurable and therefore the integral
is well defined as a Bochner integral in E. We shall assume that each operator Qt

is the covariance operator of a centred Gaussian Radon measure µt on E. Under
this assumption, on the space Cb(E) of bounded continuous functions f : E → R

we may define the operators P (t) by

P (t)f(x) :=

∫

E

f(S(t)x + y) dµt(y).
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These operators are contractions and satisfy P (0) = I and P (t) ◦ P (s) = P (t + s)
for all t, s > 0. Assuming furthermore that the family (µt)t>0 is tight, by standard
arguments we deduce that the weak limit

µ∞ := lim
t→∞

µt

exists. The measure µ∞ is a centred Radon Gaussian measure on E whose covari-
ance operator Q∞ equals the weak operator limit Q∞ = limt→∞ Qt. As is well
known, the semigroup P = (P (t))t>0 extends in a unique way to a C0-semigroup
of contractions, also denoted by P = (P (t))t>0, on each of the spaces Lp(E, µ∞),
1 6 p < ∞. The generator of this extension will be denoted by L. As before
the measure µ∞ is invariant for L. On a suitable domain of smooth cylindrical
functions (see below) we have the representation

(1.3) Lf(x) = 1
2 trQD2f(x) + 〈x, A∗Df(x)〉,

where Df denotes the Fréchet derivative of f . For the proofs of these facts and
more information we refer to [8] and the references given therein. Note that for
E = Rd the formula (1.3) reduces to the special case (1.2) of (1.1).

This paper is an outgrowth of the 8th Internet Seminar “Analytic Semigroups
and Reaction-Diffusion Problems”. The results were presented at the closing work-
shop in Casalmaggiore (June 2005).

2. Analyticity of the Ornstein-Uhlenbeck semigroup

We say that a semigroup of operators T = (T (t))t>0 on a real Banach space X is
analytic if its complexification TC = (TC(t))t>0 on XC extends analytically to some
open sector Σ containing the positive real axis. If this semigroup is contractive on
(a possibly smaller sector) Σ we call T an analytic contraction semigroup.

Under the assumptions stated in the Introduction (which are adopted through-
out this paper) and with the notations introduced there, we have the following
characterization of analyticity for the Ornstein-Uhlenbeck semigroup P [8].

Proposition 2.1. Let 1 < p < ∞. The following assertions are equivalent.

(1) The Ornstein-Uhlenbeck semigroup P is analytic on Lp(E, µ∞);
(2) There exists a constant c > 0 such that for all x∗ ∈ D(A∗) we have

Q∞A∗x∗ ∈ H and

‖Q∞A∗x∗‖H 6 c‖i∗x∗‖H .

If these equivalent conditions are fulfilled, then the semigroup P is an analytic
contraction semigroup on Lp(E, µ∞).

For the rest of this paper it will be a standing assumption that P is analytic
on Lp(E, µ∞) for some (and hence all) 1 < p < ∞. Since i∗ is weak∗-to-weakly
continuous, it maps D(A∗) onto a dense subspace of H and therefore Proposition
2.1 implies that there exists a unique bounded operator B ∈ L (H) which satisfies

(2.1) Bi∗x∗ = Q∞A∗x∗, x∗ ∈ D(A∗).

Moreover, ‖B‖ 6 c.

Lemma 2.2. We have B + B∗ = −I and [Bh, h]H = − 1
2‖h‖2

H for all h ∈ H.
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Proof. For x∗ ∈ D(A∗) we have Q∞x∗ ∈ D(A∗) and AQ∞x∗ + Q∞A∗x∗ = −Qx∗

[8, Proposition 4.1]. Hence, using (2.1) it follows that iB∗i∗x∗ + iBi∗x∗ = −ii∗x∗.
Since i is injective this gives B∗i∗x∗ + Bi∗x∗ = −i∗x∗. The second identity follows
from [Bh, h]H = 1

2 [(B + B∗)h, h]H = − 1
2‖h‖2

H . �

Let FCk,l
c (E) denote the linear subspace of Cb(E) of all functions f of the form

(2.2) f(x) = φ(〈x, x∗

1〉, . . . , 〈x, x∗

n〉),

where x∗

j ∈ D(A∗l) for all j = 1, . . . , n and φ ∈ Ck
b (Rn) has compact support. Here

A∗l is the l-th power of the adjoint of A. We write FCk
c (E) = FCk,0

c (E). It
follows from [8, Theorem 6.6] that FC2,1

c (E) is a core for L in Lp(E, µ∞).
For functions f ∈ FC1

c (E) of the form (2.2) we define the Fréchet derivative in
the direction of H by

DHf(x) :=

n
∑

j=1

∂φ

∂xj
(〈x, x∗

1〉, . . . , 〈x, x∗

n〉) i∗x∗

j .

The analyticity of the Ornstein-Uhlenbeck semigroup P implies that for all 1 6 p <
∞, DH is closable as an operator from Lp(E, µ∞) to Lp(E, µ∞; H) [8, Proposition

8.7]. In what follows we shall denote its closure again by DH . We write W 1,p
H (E, µ∞)

for its domain, which is a Banach space with respect to its graph norm.
Let H∞ denote the RKHS associated with Q∞ and let i∞ : H∞ →֒ E be the

natural inclusion mapping. The mapping

(2.3) φ(i∗
∞

x∗) := 〈x, x∗〉, x∗ ∈ E∗,

extends uniquely to an isometry φ from H∞ onto a closed subspace of L2(E, µ∞).
For h ∈ H∞ we write φh := φ(h).

The next theorem generalizes results which were proved by Fuhrman [5], and
Bogachev, Röckner and Schmuland [1] in a Hilbert space setting.

Theorem 2.3 (L in divergence form). For all f ∈ FC2,1
c (E) we have BDHf ∈

D(D∗

H) and

Lf = D∗

HBDHf.

Proof. Define the operator V with initial domain D(V ) := i∗
∞

E∗ from H∞ to H by
V i∗

∞
x∗ := i∗x∗. By [7, Theorem 3.5], the closability of DH implies the closability

of V ; its closure will be denoted by V as well. For all x∗ ∈ D(A∗) and y∗ ∈ E∗ we
have

[Bi∗x∗, V i∗
∞

y∗]H = [Bi∗x∗, i∗y∗]H = 〈Q∞A∗x∗, y∗〉 = [i∗
∞

A∗x∗, i∗
∞

y∗]H∞
.

Hence, Bi∗x∗ ∈ D(V ∗) and V ∗Bi∗x∗ = i∗
∞

A∗x∗.
¿From [7, Theorem 3.5] we know that for all g ∈ FC1

b (E) and h ∈ D(V ∗) we
have g ⊗ h ∈ D(D∗

H) and

(2.4) D∗

H(g ⊗ h) = φV ∗hg − [DHg, h]H .
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Fix x∗

1, . . . , x
∗

n ∈ D(A∗) and define T : E → Rn by Tx := (〈x, x∗

1〉, . . . , 〈x, x∗

n〉).
Using the identity B + B∗ = −I we obtain, for f ∈ FC2,1

c (E) as in (2.2), that

(2.5)

n
∑

j=1

n
∑

k=1

[i∗x∗

k, Bi∗x∗

j ]H
∂2φ

∂xj∂xk
◦ T

= 1
2

n
∑

j=1

n
∑

k=1

(

[i∗x∗

k, Bi∗x∗

j ]H + [i∗x∗

j , Bi∗x∗

k]H
) ∂2φ

∂xj∂xk
◦ T

= − 1
2

n
∑

j=1

n
∑

k=1

[i∗x∗

k, i∗x∗

j ]H
∂2φ

∂xj∂xk
◦ T

= − 1
2 tr D2

Hf.

Combining (2.4) (applied with g = ∂φ
∂xj

◦ T ) and (2.5) we obtain

D∗

HBDHf =
n

∑

j=1

φV ∗Bi∗x∗

j

( ∂φ

∂xj
◦ T

)

−
[

DH

( ∂φ

∂xj
◦ T

)

, Bi∗x∗

j

]

H

=

n
∑

j=1

〈 · , A∗x∗

j 〉
( ∂φ

∂xj
◦ T

)

−
n

∑

k=1

n
∑

j=1

[i∗x∗

k, Bi∗x∗

j ]H
∂2φ

∂xk∂xj
◦ T

= 〈 · , A∗Df〉 + 1
2 tr D2

Hf = Lf.

�

This result allows us to study the properties of L in L2(E, µ∞) with form meth-

ods. Let ℓ be the densely defined form with domain D(ℓ) = W 1,2
H (E, µ∞) defined

by
ℓ(f, g) := 〈BDHf, DHg〉.

In this formula, the brackets refer to the inner product of L2(E, µ∞; H).

Proposition 2.4. The form ℓ is closed, continuous, and dissipative. Moreover, L
is the operator associated with ℓ, and D(L) is a core for D(ℓ).

Proof. To prove closedness we need to show that D(ℓ) is complete with respect to
the norm ‖f‖ℓ := ‖f‖2 −Re ℓ(f, f) (= ‖f‖2− ℓ(f, f) since we are working over the
real scalars). This follows from the fact that DH is a closed operator with domain

W 1,2
H (E, µ∞). To prove continuity we need to show that there is a constant M > 0

such that |ℓ(f, g)| 6 M‖f‖ℓ‖g‖ℓ for all f, g ∈ D(ℓ). This follows from

|ℓ(f, g)| 6 ‖B‖ · ‖DHf‖2 · ‖DHg‖2 6 2‖B‖ · ‖f‖ℓ · ‖g‖ℓ.

To prove dissipativity we need to show that ℓ(f, f) 6 0 for all f ∈ D(ℓ). This
follows from

ℓ(f, f) = 〈BDHf, DHf〉 = − 1
2‖DHf‖2

2 6 0.

The fact that L is associated with ℓ follows from Theorem 2.3; that D(L) is a
core for D(ℓ) follows from [13, Lemma 1.25]. �

We shall not pursue this point here and content ourselves with the observation
that Proposition 2.4 implies that in L2(E, µ∞) we have the domain inclusion

D(L) →֒ W 1,2
H (E, µ∞).
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3. The sector of analyticity of the Ornstein-Uhlenbeck semigroup

Let X be a complex Banach space. For an element x ∈ X we define its duality
set by

∂x := {x∗ ∈ X∗ : ‖x‖ = ‖x∗‖ and 〈x, x∗〉 = ‖x‖ ‖x∗‖}.
By the Hahn-Banach Theorem, ∂(x) 6= ∅ for all x ∈ X .

Example 3.1. Let (M, µ) be a σ-finite measure space and let 1 6 p < ∞. With
respect to the duality pairing 〈f, g〉 =

∫

M fg dµ (note that there is no complex
conjugation), for all f ∈ Lp(M) we have

∂f = {‖f‖2−p
p f∗},

where f∗ := |f |p−2f.

Fix θ ∈ [0, π
2 ) and put

Cθ := cot θ.

Note that λ ∈ Σπ
2
−θ if and only if |Im λ| 6 Cθ Re λ. We will apply the following

well-known criterion to show that the Ornstein-Uhlenbeck semigroup is analytic on
a certain sector in the complex plane. For a proof see [9, Theorem 11.4].

Proposition 3.2. Let A be a densely defined operator on X and assume that
1 ∈ ̺(A ). The following assertions are equivalent:

(1) A generates an analytic C0-semigroup on E which is contractive on Σθ;
(2) For all 0 6= x ∈ D(A ) and all x∗ ∈ ∂(x) we have

|Im 〈A x, x∗〉| 6 −Cθ Re 〈A x, x∗〉;
(3) For all 0 6= x ∈ D(A ) there exists x∗ ∈ ∂(x) such that

|Im 〈A x, x∗〉| 6 −Cθ Re 〈A x, x∗〉.

After these preliminaries we return to the setting of Section 2 and leave it to the
reader to check that all results proved so far can be extended to the complex case
by means of complexification.

Repeating the computations of [2] we arrive at the following two identities:

Lemma 3.3. Let p ∈ [2,∞) and f ∈ FC2,1
c (E). Then,

−Re [BDHf, DHf∗]H = −Re [B∗DHf, DHf∗]H

= 1
2 |f |

p−4
(

(p − 1)‖Re (fDHf)‖2
H + ‖Im (fDHf)‖2

H

)

;

and

Im [BDHf, DHf∗]H = p|f |p−4
[

(B + 1
pI) Im (fDHf), Re (fDHf)

]

H
,

Im [B∗DHf, DHf∗]H = p|f |p−4
[

(B∗ + 1
pI) Im (fDHf), Re (fDHf)

]

H
.

Theorem 3.4. Assume that the Ornstein-Uhlenbeck semigroup P is analytic on
Lp(E, µ∞) for some (and hence all) 1 < p < ∞. Then for all 1 < p < ∞, P is
analytic and contractive on the sector Σθp

, where

(3.1) cot θp :=

√

(p − 2)2 + p2γ2

2
√

p − 1

and γ := ‖B − B∗‖.



ANALYTIC ORNSTEIN-UHLENBECK SEMIGROUPS 7

Proof. The proof follows the arguments of [2]. First we take p > 2. Using that
B − B∗ is skewadjoint it is easily checked that

‖B + 1
pI‖2 = 1

4γ2 + (1
2 − 1

p )2.

Let f ∈ FC2,1
c (E) be fixed. With

a := ‖Re (fDHf)‖H , b := ‖Im (fDHf)‖H

it follows from the first equality in Lemma 3.3 that

−Re [BDHf, DHf∗]H = 1
2 |f |

p−4((p − 1)a2 + b2).

By the Cauchy-Schwarz inequality and the second equality in Lemma 3.3 yields
∣

∣Im [BDHf, DHf∗]H
∣

∣ 6 |f |p−4abcp

√

p − 1,

where cp :=
√

p2γ2 + (p − 2)2/2
√

p − 1. Hence, using the inequality 2ab
√

p − 1 6

(p − 1)a2 + b2,

∣

∣Im [BDHf, DHf∗]H
∣

∣ 6 1
2 |f |

p−4cp((p − 1)a2 + b2) = −cp Re [BDHf, DHf∗]H .

(3.2)

In a similar way one proves that
∣

∣Im [B∗DHf, DHf∗]H
∣

∣ 6 −cp Re [B∗DHf, DHf∗]H .(3.3)

¿From Proposition 2.4 and (3.2) we obtain
∣

∣

∣
Im

∫

E

Lf · f∗ dµ∞

∣

∣

∣
6

∫

E

∣

∣Im [BDHf, BDHf∗]H
∣

∣ dµ∞

6

∫

E

−cp Re [BDHf, DHf∗]H dµ∞ = −cp Re

∫

E

Lf · f∗ dµ∞.

By approximation this inequality extends to all f ∈ D(L). Now we can apply
Proposition 3.2 to obtain the desired result.

For p ∈ (1, 2) we use a duality argument. For f ∈ FC2,1
c (E) we have

∫

E

Lf · f∗ dµ∞ =

∫

E

[B∗DHg, DHg∗]H dµ∞,

where g := f∗ belongs to Lq(E, µ∞), 1
p + 1

q = 1. The desired result now follows

from the estimate (3.3) applied to g. �

This result is optimal in the following sense:

Theorem 3.5. If, for some 1 < p < ∞, the Ornstein-Uhlenbeck semigroup P on
Lp(E, µ∞) is analytic and contractive on a sector Σθ for some θ ∈ (0, π

2 ), then
θ 6 θp.

Here, of course, θp is the angle defined by (3.1). The proof of Theorem 3.5 follows
the lines of [2], but there are some subtle differences. In particular, since we are
working in infinite dimensions the diagonalization arguments used in [2] have to be
avoided.

For h ∈ H∞ we define Kh : E → C by

Kh(x) := exp(φh(x) − 1
2 [h, h]H∞

),

where φ : H∞ → L2(E, µ∞) is defined by (2.3). Then Kh ∈ Lp(E, µ∞) for all
1 < p < ∞, and by a second quantization argument (see [4, 12]) we see that

P (t)Kh = KS∗

∞
(t)h, h ∈ H∞, t > 0,
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first in L2(E, µ∞) and then also in Lp(E, µ∞) by consistency. By an analytic
continuation argument, this implies that

P (z)Kh = KS∗

∞
(z)h, h ∈ H∞, z ∈ Σθ,(3.4)

where Σθ is as in the theorem.

Lemma 3.6. For all h ∈ H∞ and z ∈ Σθ we have

(p − 1)‖Re S∗

∞
(z)h‖2

H∞

+ ‖Im S∗

∞
(z)h‖2

H∞

6 (p − 1)‖Re h‖2
H∞

+ ‖Im h‖2
H∞

.

Proof. First let h = i∗
∞

x∗ for some x∗ ∈ E∗ and put g(x) := exp(φh(x)). Then
∫

E

|g(x)|p dµ∞(x) =

∫

E

exp(p〈x, Re x∗〉) dµ∞(x) =

∫

R

exp(pu) d(τµ∞)(u),

where τx := 〈x, Re x∗〉 so that τµ∞ is Gaussian with variance σ2 = ‖Re h‖2
H∞

.
Therefore,

∫

E

|g(x)|p dµ∞(x) =
1

σ
√

2π

∫

R

exp
(

pu − u2

2σ2

)

du = exp
(σ2p2

2

)

.

Following the argument of [2, Lemma 7] we obtain

‖Kh‖p =
∣

∣ exp(− 1
2 [h, h]H∞

)
∣

∣

(

∫

E

|g(x)|p dµ∞

)1/p

= exp
(‖Im h‖2

H∞

− ‖Re h‖2
H∞

2

)

exp
(p‖Re h‖2

H∞

2

)

= exp
(

1
2‖Im h‖2

H∞

+
p − 1

2
‖Re h‖2

H∞

)

.(3.5)

Hence, with (3.4) and (3.5),
(3.6)

‖P (z)Kh‖p

‖Kh‖p
= exp

(

1
2

(

(p − 1)‖Re S∗

∞
(z)h‖2

H∞

+ ‖Im S∗

∞
(z)h‖2

H∞

− (p − 1)‖Re h‖2
H∞

− ‖Im h‖2
H∞

)

)

.

Since P (z) is a bounded operator, the exponent in (3.6) has to remain bounded if
we replace h by λh and let λ → ∞. Therefore the exponent is nonpositive and the
lemma is proved for elements h ∈ H∞ of the form h = i∗

∞
x∗. The result extends

to arbitrary h ∈ H∞ by a density argument. �

Proof of Theorem 3.5. For j ∈ {1, 2} let x∗

j ∈ D(A∗), hj := i∗
∞

x∗

j and h = h1 + ih2.
As in [2] we check that for all ϕ ∈ (−θ, θ),

(p − 1) cosϕ[A∗

∞
h1, h1]H∞

+ cosϕ[A∗

∞
h2, h2]H∞

6 (p − 1) sinϕ[A∗

∞
h2, h1]H∞

− sin ϕ[A∗

∞
h1, h2]H∞

.

Observe that

[A∗

∞
h1, h2]H∞

= [i∗
∞

A∗x∗

1, i
∗

∞
x∗

2]H∞
= 〈Q∞A∗x∗

1, x
∗

2〉 = [Bi∗x∗

1, i
∗x∗

2]H .

Therefore

(p − 1)[A∗

∞
h1, h1]H∞

+ [A∗

∞
h2, h2]H∞

= (p − 1)[Bi∗x∗

1, i
∗x∗

1]H + [Bi∗x∗

2, i
∗x∗

2]H

= − 1
2

(

(p − 1)‖i∗x∗

1‖2
H + ‖i∗x∗

2‖2
H

)

,
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and

(p − 1)[A∗

∞
h2, h1]H∞

− [A∗

∞
h1, h2]H∞

= (p − 1)[Bi∗x∗

2, i
∗x∗

1]H − [Bi∗x∗

1, i
∗x∗

2]H

= (p − 1)[Bi∗x∗

2, i
∗x∗

1]H + [(I + B)i∗x∗

2, i
∗x∗

1]H

= [(pB + I)i∗x∗

2, i
∗x∗

1]H

= 1
2

(

p[(I + 2B)i∗x∗

2, i
∗x∗

1]H + (2 − p)[i∗x∗

2, i
∗x∗

1]H
)

.

It follows that

sin ϕ
(

− p[(I + 2B)i∗x∗

2, i
∗x∗

1]H + (p − 2)[i∗x∗

2, i
∗x∗

1]H
)

6 cosϕ
(

(p − 1)‖i∗x∗

1‖2
H + ‖i∗x∗

2‖2
H

)

.

Now, using the fact that the operator D := (I + 2B) + (1 − 2
p )I is normal and

therefore satisfies r(D) = ‖D‖, the proof can be finished in the same way as in
[2]. �
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