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Abstract. We consider the linear stochastic Cauchy problem

dX(t) = AX(t) dt + B dWH(t), t > 0,

where A generates a C0-semigroup on a Banach space E, WH is a cylindrical
Brownian motion over a Hilbert space H, and B : H → E is a bounded
operator. Assuming the existence of a unique minimal invariant measure µ∞,
let Lp denote the realization of the Ornstein-Uhlenbeck operator associated
with this problem in Lp(E, µ∞). Under suitable assumptions concerning the
invariance of R(B) under the semigroup generated by A, we prove the following
domain inclusions, valid for 1 < p 6 2:

D((−Lp)
1/2 ) →֒ W

1,p
H (E, µ∞),

D(Lp) →֒ W
2,p
H (E, µ∞).

Here W
k,p
H (E, µ∞) denotes the k-th order Sobolev space of functions with

Fréchet derivatives up to order k in the direction of H. No symmetry assump-
tions are made on Lp.

1. Introduction and statement of the results

Let L be the classical Ornstein-Uhlenbeck operator, defined for functions f ∈
C2

c (Rd) by
Lf(x) = 1

2∆f(x) − 1
2 〈x,∇f(x)〉.

The classical Meyer inequalities [18] state that for 1 < p < ∞ one has the equiva-
lence of norms

‖(I − L)
1/2f‖Lp(Rd,γ) ≃ ‖f‖W 1,p(Rd,γ),

where γ is the standard normal distribution on R
d and W 1,p(Rd, γ) denotes the

Gaussian Sobolev space of all functions f ∈ Lp(Rd, γ) having a weak partial deriva-
tives belonging to Lp(Rd, γ). For various proofs of Meyer’s inequalities and related
results, see e.g. [2, 10, 11, 12, 22, 23, 28]. Extensions to a more general class
of Ornstein-Uhlenbeck operators were obtained by Shigekawa [24], Song [26], and
Chojnowska-Michalik and Goldys [3, 4], who considered the operator

Lf(x) = 1
2 traceQD2f(x) + 〈Ax,Df(x)〉.

Here Q is a self-adjoint positive definite operator on a separable real Hilbert space
E, A generates a C0-semigroup S = (S(t))t>0 of bounded operators on E, and D
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denotes the Fréchet derivative. Ornstein-Uhlenbeck operators naturally occur as
the generators of the transition semigroups of stochastic linear Cauchy problems
on E of the form

(1.1) dX(t) = AX(t) dt+B dWH(t), t > 0,

provided one sets Q := BB∗. Here, H is a real Hilbert space, WH = (WH(t))t>0 is
an H-cylindrical Brownian motion, and B : H → E is a bounded operator.

Let us assume that (1.1) admits an invariant measure. Then it admits a unique
minimal invariant measure µ∞, and it is shown in [3, 4] that if the closure of L in
L2(E, µ∞) is self-adjoint, then for all 1 < p <∞ one has

D((−L)
1/2) = W 1,p

H (E, µ∞), D(L) = W 2,p
H (E, µ∞) ∩W 1,p

A∞
(E, µ∞).

Here L denotes the realization of the Ornstein-Uhlenbeck operator in Lp(E, µ∞).

For the definition of the space W 1,p
A∞

(E, µ∞) we refer to Section 4.
In view of the applications to stochastic Cauchy problems it is natural to ask for

generalizations in infinite dimensions beyond the self-adjoint case. The purpose of
this paper is to prove some first results in this direction. Specifically, assuming that
the semigroup S restricts to a C0-contraction semigroup on H (this assumption,
which may actually be relaxed somewhat, is automatically satisfied in the self-
adjoint case, cf. Remark 3.4) we shall prove, for 1 < p 6 2, that there exists a
constant Cp > 0 such that

(1.2) ‖DHf‖Lp(E,µ∞;H) 6 Cp‖(I − L)
1/2f‖Lp(E,µ∞)

for a suitable class of functions f on E. Here E is allowed to be an arbitrary real
Banach space, H is the reproducing kernel Hilbert space associated with Q, and
DH denotes the Fréchet derivative in the direction of H. As a result we obtain the
domain inclusions

(1.3) D((−L)
1/2) →֒ W 1,p

H (E, µ∞), D(L) →֒W 2,p
H (E, µ∞),

where, with some abuse of notation, the closure of L in Lp(E, µ∞) is denoted again

by L. The space W k,p
H (E, µ∞) is defined as the Banach space of all functions f ∈

Lp(E, µ∞) whose Fréchet derivativesDj
H belong to Lp(E, µ∞;H⊗j) for j = 1, . . . , k.

In this context it should be noted that in the finite dimensional case E = R
d, the

full identification of the domain

D(L) = W 2,p(Rd, µ∞)

was obtained recently without symmetry assumptions on L and for all 1 < p < ∞
by Metafune, Prüss, Rhandi and Schnaubelt [16]; these authors only need a non-
degeneracy assumption ensuring that H = R

d.
Our approach builds on the methods of [3], which in turn are based on the square

function approach of [24]. The main novelty of the present work is the use of H∞-
calculus, which enables us to get around the self-adjointness assumptions of [24]
and [3] as far as the inclusions in (1.3) are concerned. Indeed, some of the crucial
estimates in [24] and [3] can be interpreted as square function estimates, and it
has been known for long that such estimates can efficiently be deduced from H∞-
calculus. In recent work on parabolic evolution equations, H∞-calculus has become
an important tool in proving maximal regularity results. In the present context,
the embedding D(L) →֒ W 2,p

H (E, µ∞) can be considered as a maximal regularity
result.
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On a technical level, instead of working with a core of cylindrical polynomials
as in [3], we follow the approach of [9] and some of the references cited there, and
work instead with a core of bounded cylindrical functions. This simplifies some of
the technical lemmas involving approximation arguments.

The organization of the paper is as follows. In Section 2 we start with some
generalities on the Cauchy semigroup associated with a bounded C0-semigroup
and prove a square function estimate and a maximal estimate. Our object of study,
the non-symmetric Ornstein-Uhlenbeck operator, is introduced in Section 3. This
section also contains some technical lemmas needed later on. The main results are
presented in Section 4. Here we follow the ideas of [3, 24], with some simplifications
due to our use of H∞-calculus techniques. In the final Section 5 we briefly comment
on the symmetric case.

2. The Cauchy semigroup

Let T = (T (t))t>0 be a bounded C0-semigroup with generator G on a Banach
space X . We begin our discussion with the following well-known result [1, Propo-
sition 3.8.2].

Proposition 2.1. There exists a unique closed densely defined operator (−G)
1/2 on

X such that ((−G)
1/2)2 = −G and

(−G)
1/2x = lim

δ↓0
(δ −G)

1/2x, x ∈ D(G).

Moreover, for all δ > 0 we have

D((−G)
1/2) = D((δ −G)

1/2),

and D(G) is a core for D((−G)
1/2).

As it turns out, the operator −(−G)
1/2 is the generator of an analytic semigroup

on X . This semigroup is introduced in the next definition.

Definition 2.2. The Cauchy semigroup associated with T is the C0-semigroup

T1/2 = (T1/2(t))t>0 on X defined by T1/2(0) = I and

T1/2(t)x =

∫ ∞

0

gt(s)T (s)xds, x ∈ X, t > 0,

where gt : (0,∞) → R is given by

gt(s) :=
t

2
√
πs3

exp
(−t2

4s

)

.(2.1)

Note that T1/2 is a bounded semigroup and that T1/2 is uniformly exponentially
stable if T is uniformly exponentially stable.

The following result holds [1, Theorem 3.8.3]:

Proposition 2.3. The Cauchy semigroup T1/2 extends to a bounded analytic C0-

semigroup on X of angle 1
4π, and its generator G1/2 equals −(−G)

1/2 .

Let H be a real Hilbert space, let (Ω, µ) be a σ-finite measure space, and let
1 6 p <∞. Throughout the rest of this section we assume that P = (P (t))t>0 and
U = (U(t))t>0 are bounded C0-semigroups on Lp(Ω, µ) and H respectively. As is
well known, the algebraic tensor product operators T (t) := P (t) ⊗ U(t) extend in
a unique way to form a bounded semigroup T = (T (t))t>0 on Lp(Ω, µ;H), and it
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is easy to check that this semigroup is a C0-semigroup. Denoting the generators
of P and U by GP and GU respectively, the generator G of T is given on the core
D(GP ) ⊗ D(GU ) by

G = GP ⊗ I + I ⊗GU .

The following maximal estimate is a simple vector-valued extension of a result
in [17, p. 4]. For the convenience of the reader we include the proof.

Theorem 2.4 (Maximal estimate for T1/2). Let 1 < p < ∞ and let P = (P (t))t>0

be a C0-semigroup of positive operators on Lp(Ω, µ) satisfying

‖P (t)f‖1 6 ‖f‖1, ‖P (t)f‖∞ 6 ‖f‖∞
for all f ∈ L1(Ω, µ) ∩ L∞(Ω, µ) and t > 0. Let U = (U(t))t>0 be a bounded C0-

semigroup on H. For all f ∈ Lp(Ω, µ;H) the maximal function

f⋆(ω) := sup
t>0

‖T1/2(t)f(ω)‖H , ω ∈ Ω,

belongs to Lp(Ω, µ) and we have

‖f⋆‖p 6
pCmU

p− 1
‖f‖p,

where C is a universal constant and mU = supt>0 ‖U(t)‖.

Proof. Note that t2gt(s) = φ0(s/t
2), where gt is given by (2.1) and

φ0(s) :=
1

2
√
πs3

exp
(−1

4s

)

.

Take f ∈ Lp(Ω, µ;H) and put

M(t)f :=
1

t

∫ t

0

T (s)f ds.

Observe that

(2.2) ‖(P ⊗ U)f‖H 6 ‖U‖P (‖f‖H) µ-almost surely.

To see this, let g =
∑N

n=1 1Ωn
⊗ hn be a simple function; here the measurable sets

Ωn are disjoint and the vectors hn are taken from H . Taking norms in H pointwise
and using the positivity of P we have, µ-almost surely,

‖(P ⊗ U)g‖H =
∥

∥

∥

N
∑

n=1

P1Ωn
⊗ Uhn

∥

∥

∥

H

6 ‖U‖
∥

∥

∥

N
∑

n=1

P1Ωn
⊗ hn

∥

∥

∥

H
6 ‖U‖

N
∑

n=1

(P1Ωn
)‖hn‖H

= ‖U‖
N

∑

n=1

P (1Ωn
‖hn‖H) = ‖U‖P (‖g‖H).

From (2.2) we have, for µ-almost all ω ∈ Ω,

(2.3) Mf(ω) := sup
t>0

‖M(t)f(ω)‖H 6 mU sup
t>0

1

t

∫ t

0

P (s)‖f‖H(ω) ds.
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Using that T (t)f = d
dt(tM(t)f) we write

T1/2(t)f =

∫ ∞

0

φ0(
s

t2
)T (s)f

ds

t2

= lim
n→∞

[ s

t2
φ0(

s

t2
)M(s)f

]n

1/n
−

∫ ∞

0

s

t2
φ′0(

s

t2
)M(s)f

ds

t2

= −
∫ ∞

0

rφ′0(r)M(t2r)f dr,

where we used that sφ0(s) → 0 as s→ 0 or ∞. Noting that the function r 7→ rφ′0(r)
is integrable on R+ we let C := ‖r 7→ rφ′0(r)‖1. For µ-almost all ω ∈ Ω we obtain
the estimate

‖T1/2(t)f(ω)‖H 6

∫ ∞

0

r|φ′0(r)| ‖M(t2r)f(ω)‖H dr 6 CMf(ω).

This gives f⋆ 6 CMf µ-almost everywhere and

‖f⋆‖p 6 C‖Mf‖p 6
pCmU

p− 1
‖f‖p,

where the last inequality follows from (2.3) and the Hopf-Dunford-Schwartz Ergodic
Theorem [13, Theorem 6.12]. �

Theorem 2.5 (Square function estimate for T1/2). Let 1 < p < ∞. Let P =
(P (t))t>0 be a C0-semigroup of positive contractions on Lp(Ω, µ) and let U =
(U(t))t>0 be a bounded C0-semigroup on H which admits a dilation to a bounded

group on a Hilbert space H̄. Suppose that G has dense range. Then there exist

constants 0 < c 6 C <∞ such that for all f ∈ Lp(Ω, µ;H) we have

c‖f‖Lp(Ω,µ;H) 6

∥

∥

∥

∥

(

∫ ∞

0

∥

∥tG1/2T1/2(t)f
∥

∥

2

H

dt

t

)
1/2

∥

∥

∥

∥

Lp(Ω,µ)

6 C‖f‖Lp(Ω,µ;H).

Proof. By the Hilbert space-valued extension of [15, Corollary 2.3] it suffices to
check that the operator −G1/2 admits a bounded H∞(Σθ)-calculus for some θ ∈
(0, 1

2π).
By Fendler’s theorem [7], see also [14, Theorem 10.13], the semigroup P admits

a dilation to a C0-group of positive isometries P̄ on some space Lp(Ē, µ̄) containing
Lp(E, µ) as a complemented subspace. By the assumption on U it follows that
the semigroup T = P ⊗ U admits a dilation to a bounded C0-group T̄ = P̄ ⊗ Ū
on Lp(Ē, µ̄; H̄). Therefore, the negative generator −G of T admits a bounded
H∞(Ση)-calculus by [14, Corollary 10.9] for all η ∈ (π

2 , π]. This implies that the
negative generator −G1/2 of T1/2 admits a bounded H∞(Σθ)-calculus for all θ ∈
(π

4 , π]. �

3. Notations and standing assumptions

In this section we introduce the setting and notations which shall be used in the
rest of the paper.

We consider the linear stochastic Cauchy problem

(SCP)

{

dX(t) = AX(t) dt+B dWH(t), t > 0,

X(0) = x.



6 JAN MAAS AND JAN VAN NEERVEN

HereA is the generator of a C0-semigroup S = (S(t))t>0 of bounded linear operators
on a real Banach space E, WH = (WH(t))t>0 is a cylindrical Brownian motion on
a real Hilbert space H , and B : H → E is a bounded operator. Throughout this
paper we shall assume that the problem (3) has a (necessarily unique) weak solution
Xx = (Xx(t))t>0. For the precise definitions of these notions as well as necessary
and sufficient conditions for the existence of a weak solution we refer to [20].

The range of the operator B : H → E has the structure of a Hilbert space in
a natural way by endowing it with the norm of H ⊖ ker(B). More precisely, for
h ∈ H we define

‖Bh‖R(B) := inf{‖h′‖H : Bh′ = Bh}.
In everything that follows, we may (and shall) replace H with H ⊖ (ker(B))⊥ and
thereby assume, without any loss of generality, that B is injective. Furthermore it
will be convenient to identify H with its image under B in E; we shall frequently
do so without further notice.

On the space Cb(E) of all bounded continuous functions f : E → R we define a
semigroup of contractions P = (P (t))t>0 by the formula

P (t)f(x) = E(f(S(t)x +X0(t))) = E(f(Xx(t))), t > 0, x ∈ E, f ∈ Cb(E).

The semigroup P is called the Ornstein-Uhlenbeck semigroup associated with A
and H . In general it fails to be strongly continuous with respect to the uniform
topology of Cb(E), but it is always strongly continuous with respect to the mixed
topology of Cb(E) [9]. By definition, this is the finest locally convex topology of
Cb(E) with agrees with the compact-open topology on all norm-bounded subsets
of Cb(E). The infinitesimal generator of P with respect to this topology will be
denoted by L. In order to describe the operator L in more detail we introduce the
following terminology.

Let FCm,n
b (E) denote the linear subspace of Cb(E) consisting of all functions

f : E → R of the form

(3.1) f(x) = φ(〈x, x∗1〉, . . . , 〈x, x∗k〉)

where k > 1 is an integer, x∗1, . . . , x
∗
k ∈ D(A∗n), and φ belongs to the space Cm

b (Rk)
of bounded functions on R

k with bounded and continuous derivatives up to order
m. The elements of FCm,n

b (E) are referred to as cylindrical Cm,n
b -functions. We

write FCm
b (E) = FCm,0

b (E), with the understanding that D(A∗0) = E∗.
For a function f ∈ FC1

b (E) of the form (3.1), the Fréchet derivative Df and the
Fréchet derivative DHf in the direction of H are defined by

(3.2) Df(x) =

k
∑

j=1

Djφ(〈x, x∗1〉, . . . , 〈x, x∗k〉)x∗j

and

(3.3) DHf(x) =

k
∑

j=1

Djφ(〈x, x∗1〉, . . . , 〈x, x∗k〉)B∗x∗j .

Lemma 3.1. For all f ∈ FCm,n
b (E) and t > 0 we have P (t)f ∈ FCm,n

b (E) and

DHP (t)f(x) = B∗S∗(t) E(Df(Xx(t))).
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Proof. Let f be as in (3.1). Let µt denote the distribution of the E-valued random
variable X0(t). Then µt is a Radon probability measure µt on E and we have

P (t)f(x) = E(f(S(t)x +X0(t)))

=

∫

E

f(S(t)x+ y) dµt(y)

=

∫

E

φ(〈S(t)x + y, x∗1〉, . . . , 〈S(t)x + y, x∗k〉) dµt(y)

= ψt(〈x, S∗(t)x∗1〉, . . . , 〈x, S∗(t)x∗k〉),
where

ψt(ξ1, . . . , ξn) =

∫

E

φ(ξ1 + 〈y, x∗1〉, . . . , ξk + 〈y, x∗k〉) dµt(y).

Hence P (t)f ∈ FCm,n
b (E) and, by differentiation under the integral we obtain

DHP (t)f(x) =

k
∑

j=1

∫

E

Djφ(〈S(t)x + y, x∗1〉, . . . , 〈S(t)x+ y, x∗n〉)B∗S∗(t)x∗j dµt(y)

=

k
∑

j=1

EDjφ(〈Xx(t), x∗1〉, . . . , 〈Xx(t), x∗n〉)B∗S∗(t)x∗j

= B∗S∗(t) E(Df(Xx(t))).

�

In the same way as in [9] one can show that

(3.4) C := {f ∈ FC∞,1
b (E) : x 7→ 〈x,A∗Df(x)〉 belongs to Cb(E)}.

is a core for D(L) and that on this core, L is given explicitly by

(3.5)
Lf(x) :=1

2 traceD2
Hf(x) + 〈x,A∗Df(x)〉

=1
2 traceQD2f(x) + 〈x,A∗Df(x)〉, x ∈ E, f ∈ C .

In order to be able to discuss the properties of the Ornstein-Uhlenbeck semigroup
P in an Lp-setting, for the rest of the paper we shall assume that the problem (SCP)
admits an invariant measure, i.e., a Radon probability measure µ on E such that
for all f ∈ Cb(E) and t > 0 we have

(3.6)

∫

E

P (t)f dµ =

∫

E

f dµ.

This measure is centred Gaussian but needs not be unique. However, the existence
of an invariant measure implies the existence of a unique minimal invariant measure
µ∞, whose covariance operator Q∞ ∈ L (E∗, E) is given by

〈Q∞x
∗, y∗〉 =

∫ ∞

0

〈S(t)QS∗(t)x∗, y∗〉 dt, x∗, y∗ ∈ E∗,

where Q := B ◦B∗. The minimality of µ∞ is expressed by the fact that we have

〈Q∞x
∗, x∗〉 6 〈Cx∗, x∗〉, x∗ ∈ E∗,

whenever C is the covariance operator of an invariant measure µ. For proofs and
more information on this topic we refer to [5, 21].

In what follows, H∞ denotes the reproducing kernel Hilbert space associated
with Q∞ and i∞ : H∞ →֒ E the inclusion operator.
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By standard arguments, for 1 6 p <∞ the semigroup P extends in a unique way
to a C0-semigroup of contractions, also denoted by P , on Lp(E, µ∞). Its generator
will be denoted by L. Since Cb(E) is dense in Lp(E, µ∞), the identity (3.6) extends
to Lp(E, µ∞):

∫

E

P (t)f dµ∞ =

∫

E

f dµ∞, f ∈ Lp(E, µ∞).

From this it follows that

(3.7)

∫

E

Lf dµ∞ = 0, f ∈ D(L).

It is shown in [8] that DH is closable as an operator from Lp(E, µ∞) into
Lp(E, µ∞;H) if and only if the mapping i∗∞x

∗ 7→ B∗x∗ is closable from H∞ into
H . This condition is independent of p ∈ [1,∞), and if it is satisfied we will simply
say that DH is closable. If DH is closable, then by abuse of notation, the closure
of DH as an operator from Lp(E, µ∞) into Lp(E, µ∞;H) will be denoted by DH

as well and we define

W 1,p
H (E, µ∞)

to be its domain. The space W 1,p
H (E, µ∞;H) is defined similarly, noting that DH

is also closable as an operator from Lp(E, µ∞;H) to Lp(E, µ∞;H⊗2). Denoting its
closure again by DH we define

W 2,p
H (E, µ∞) := {f ∈W 1,p

H (E, µ∞) : DHf ∈ W 1,p
H (E, µ∞;H)}.

The proofs of the following two lemmas are left to the reader.

Lemma 3.2. Let 1 6 p <∞. Then FC∞
b (E) is dense in W 1,p

H (E, µ∞).

Lemma 3.3. Let 1 6 p, q, r < ∞ satisfy 1/p + 1/q = 1/r. If DH is closable, then for

all f ∈W 1,p
H (E, µ∞) and g ∈ W 1,q

H (E, µ∞) we have fg ∈W 1,r
H (E, µ∞) and

DH(fg) = fDHg + gDHf.

From this point on we make the following standing assumption. Recall our
convention to identify H with its image under B in E.

Assumption (A1). The space H is invariant under S and the restricted semi-

group SH := S|H admits a dilation to a bounded C0-group on H.

Note that if S̃H is a dilation of SH , then the adjoint group S̃∗
H is a dilation of S∗

H ;
this fact will be used in the proof of Theorem 4.5 below.

By the Sz.-Nagy Unitary Dilation Theorem, Assumption (A1) is fulfilled if SH

is contractive. By [9, Theorem 4.5], this includes the case where the semigroup P2

is symmetric on L2(E, µ∞).

Remark 3.4. In the setting considered in [3], assumption (A1) is automatically
satisfied in the Ornstein-Uhlenbeck case. To explain this more carefully, let us
recall that the authors start from an arbitrary self-adjoint contraction semigroup
S on a Hilbert space H , on which a non-degenerate centred Gaussian measure µ
is given. Denoting by C the covariance operator of µ, they define a self-adjoint C0-
contraction semigroup SC on the reproducing kernel Hilbert space HC associated
with C by the formula

SC(t) := C
1/2S (t)C−1/2 , t > 0.
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This semigroup is well defined because the non-degeneracy of µ implies that C
1/2

is a unitary operator from H onto HC . The object of study in [3] is the second
quantization (in the sense of [25]) of SC(t) on L2(H , µ).

In our setting, the spaces H and HC correspond to E and H∞, the semigroup
S corresponds to S, the measure µ corresponds to µ∞, and the operator C to
Q∞. It is important to observe, however, that the semigroup SC corresponds to

our semigroup S∞ if and only if for all t > 0 one has S (t)C
1/2 = C

1/2S (t), or
equivalently, if and only if S (t)C = CS (t). This is the ‘Ornstein-Uhlenbeck case’
referred to above, which is also considered in [4]. In that paper, the results of [3]

are applied to the semigroup S0(t) := C−1/2S (t)C
1/2 on H .

Let us now assume that we are in the Ornstein-Uhlenbeck case. To verify that
Assumption (A1) is satisfied, note that by what has been said, in the setting of [3]
the semigroup S∞ = SC is self-adjoint on H∞. Therefore by [9, Theorems 4.5 and
7.4], (A1) holds.

It should be noted that the second quantization as defined in [25], which is also
used in the papers [9, 24], is different from the second quantization as it is used
in [3, 4]. Indeed, the second quantizations of the operators S (t) in the sense of

[3, 4] are equal to the second quantizations of the operators C
1/2S (t)C−1/2(t) in the

sense of [25]. This difference in terminology accounts for the frequent occurrence
of square roots in [3, 4].

It is proved in [8] that (A1) implies that DH is closable. Furthermore, (A1)
enables us to define a bounded C0-semigroup on Lp(E, µ∞;H) by

T (t) = P (t) ⊗ S∗
H(t), t > 0.

We denote the generator of T by G.

Proposition 3.5. Let 1 6 p < ∞. For all f ∈ W 1,p
H (E, µ∞) and t > 0 we have

P (t)f ∈W 1,p
H (E, µ∞) and

(3.8) DHP (t)f = T (t)DHf.

Proof. For functions f ∈ FC1
b (E), (3.8) is an immediate consequence of (3.2),

(3.3), Lemma 3.1, and the identity B∗S∗(t)x∗ = S∗
H(t)B∗x∗. The general case

follows from the closability of DH via an approximation argument. �

Our next aim is to prove a product rule and chain rule for L. Since we will deal
with different exponents, we shall write Lp, rather than L, to denote the generator
of the semigroup P in Lp(E, µ∞). We need the following basic result.

Lemma 3.6. For all 1 6 p 6 q <∞, C is dense in D(Lp) ∩W 1,q
H (E, µ∞).

Proof. The proof proceeds in several steps.

Step 1 – C is dense in W 1,q
H (E, µ∞). For this it suffices to prove that C0 is dense

in W 1,q
H (E, µ∞), where C0 ⊆ C is defined as

C0 := {f ∈ FC∞,1
b (E) : ∇φ ∈ Cc(R

k; Rk)}.
Here we use the notation of (3.1) and the discussion following it.

To prove that C0 is dense in W 1,q
H (E, µ∞), let f ∈ FC∞

b (E) be a given function
of the form (3.1), i.e.,

f(x) = φ(〈x, x∗1〉, . . . , 〈x, x∗k〉)



10 JAN MAAS AND JAN VAN NEERVEN

with φ ∈ C∞
b (Rk) and x∗1, . . . , x

∗
k ∈ E∗, and put

Rn := nR(n,A).

Choose smooth functions ψn : R
k → [0, 1] satisfying ψn(ξ) = 1 for |ξ| 6 n, ψn(ξ) =

0 for |ξ| > n+ 1, and |∇ψn(ξ)| 6 2 for all ξ ∈ R
k. The functions

fn(x) := (ψnφ)(〈x,R∗
nx

∗
1〉, . . . , 〈x,R∗

nx
∗
k〉)

belong to C0 and satisfy fn → f in Lq(E, µ∞) and DHfn → DHf in Lq(E, µ∞;H);
the second assertion follows by observing that

lim
n→∞

B∗R∗
nx

∗ = lim
n→∞

R(n,A∗
H)B∗x∗ = B∗x∗

strongly in H . Since FC∞
b (E) is dense in W 1,q

H (E, µ∞) by Lemma 3.2, this proves
the claim.

Step 2 – Fix f ∈ D(Lp)∩W 1,q
H (E, µ∞). By Step 1 we can find a sequence (fn)n>1

in C such that fn → f in W 1,q
H (E, µ∞).

Fix λk > 0 so large that

‖λkR(λk, Lq)f − f‖q <
1/k,

‖λkR(λk, Gq)DHf −DHf‖q <
1/k,

‖λkR(λk, Lp)Lpf − Lpf‖p <
1/k.

For each k choose nk so large that

‖λkR(λk, Lq)(fnk
− f)‖q <

1/k,

‖λkR(λk, Gq)(DHfnk
−DHf)‖q <

1/k,

‖λkR(λk, Lp)(Lpfnk
− Lpf)‖p <

1/k.

The second inequality can be achieved since DHfn → DHf in Lq(E, µ∞;H) and
the third since λkR(λk, Lp)Lp is a bounded operator. With these choices we have

‖λkR(λk, Lq)fnk
− f‖q <

2/k,

‖λkR(λk, Gq)DHfnk
−DHf‖q <

2/k,

‖λkR(λk, Lp)Lpfnk
− Lpf‖p <

2/k.

In view of the identity R(λk, Gq)DHfnk
= DHR(λk, Lq)fnk

, cf. Proposition 3.5,
this can be restated as saying that

gk := λkR(λk, L)fnk
→ f in D(Lp) ∩W 1,q

H (E, µ∞).

Step 3 – Writing gk =
∫ ∞

0 λke
−λktP (t)fnk

dt, each gk can be approximated in
Lq(E, µ∞) by Riemann sums of the form

g
(l)
k :=

N(l)
∑

j=1

(t
(l)
j − t

(l)
j−1) · λke

−λkt
(l)
j P (t

(l)
j )fnk

.

Letting l → ∞ we obtain

lim
l→∞

Lpg
(l)
k = lim

l→∞

N(l)
∑

j=1

(t
(l)
j − t

(l)
j−1) · λke

−λkt
(l)
j P (t

(l)
j )Lpfnk

=

∫ ∞

0

λke
−λktP (t)Lpfnk

dt = Lpgk
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and, using the closedness of DH ,

lim
l→∞

DHg
(l)
k = lim

l→∞

N(l)
∑

j=1

(t
(l)
j − t

(l)
j−1) · λke

−λkt
(l)
j T (t

(l)
j )DHfnk

=

∫ ∞

0

λke
−λktT (t)DHfnk

dt

=

∫ ∞

0

λke
−λktDHP (t)fnk

dt = DHgk.

Hence,

lim
l→∞

g
(l)
k = gk in D(Lp) ∩W 1,q

H (E, µ∞).

Step 4 – Combining Steps 2 and 3 we find

lim
k→∞

lim
l→∞

g
(l)
k = f in D(Lp) ∩W 1,q

H (E, µ∞).

Since each g
(l)
k belongs to C , the lemma is proved. �

Remark 3.7. We know that C is dense in D(Lp), and Step 1 in the above proof

shows that C is also dense in W 1,q
H (E, µ∞). However, this by itself does not permit

us to conclude that C is dense in D(Lp) ∩W 1,q
H (E, µ∞).

In fact, if X1 and X2 are Banach spaces which are continuously embedded in a
Banach space X and Y is a linear subspace of X which is dense in both X1 and
X2, it may happen that Y fails to be dense in X1 ∩X2. An example is obtained by
taking X = L2(−1, 1), X1 = L2(−1, 1) ∩ C[0, 1], X2 = L2(−1, 1) ∩ C[−1, 0], and
Y = {f ∈ C[−1, 1] : f(−1) = f(1)}. Clearly, Y is dense in X1 and in X2, but not
in X1 ∩X2 = C[−1, 1].

Lemma 3.8 (Product rule). Let 1 6 p, q, r < ∞ satisfy 1/p + 1/q = 1/r. For all

f ∈ D(Lp) ∩W 1,p
H (E, µ∞) and g ∈ D(Lq) ∩W 1,q

H (E, µ∞) we have fg ∈ D(Lr) and

Lr(fg) = g · Lpf + f · Lqg + [DHf,DHg]H .

Proof. If f , g ∈ C , then f ∈ D(Lp) ∩W 1,p
H (E, µ∞) and g ∈ D(Lq) ∩W 1,q

H (E, µ∞),
and the identity follows by a direct computation based on (3.5). The general case
follows by approximation via Lemma 3.6 and the closedness of the operators in-
volved. �

Lemma 3.9 (Chain rule). Let 1 6 p < ∞. For f ∈ D(Lp) ∩W 1,2p
H (E, µ∞) and

ϕ ∈ C2
b (R) we have ϕ ◦ f ∈ D(Lp) and

Lp(ϕ ◦ f) = (ϕ′ ◦ f)Lpf +
1

2
(ϕ′′ ◦ f)‖DHf‖2

H .

Proof. For f ∈ C this follows by a direct computation based on (3.5). The gen-
eral case follows again by approximation via Lemma 3.6 and the closedness of the
operators involved. �
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4. Main results

In this section we shall work with the rescaled semigroup

P̃ (t) := e−tP (t)

in Lp(E, µ∞). The associated Cauchy semigroup generated by

L̃1/2 := (L − I)1/2

is denoted by (P̃1/2(t))t>0. We start with a technical lemma which will be needed in
the proof of Theorem 4.5.

Lemma 4.1. Let 1 < p <∞. For all f ∈ C we have L̃1/2f ∈W 1,p
H (E, µ∞).

Proof. First we use (3.5) to show that Lf ∈ W 1,p
H (E, µ∞). Using this fact together

with Proposition 3.5, which implies that P acts as a bounded C0-semigroup in
W 1,p

H (E, µ∞), we represent L̃1/2f as a Bochner integral in W 1,p
H (E, µ∞). Indeed, in

Lp(E, µ∞) we have the standard identity

L̃1/2f =
1√
π

∫ ∞

0

t−
1/2e−tP (t)(L − I)f dt, f ∈ D(L),

and by the observations just made this integral converges as a Bochner integral in
W 1,p

H (E, µ∞). �

In the results below we perform ‘pointwise’ computations, which can be justified
by the fact that analytic functions with values in vector-valued Lp-spaces admit
pointwise analytic versions. Results of this type go back to Stein [27] and have
been investigated in detail in [6]. The properties of the pointwise analytic versions

t 7→ P̃1/2(t)f(x) needed here are discussed in detail in [3].

Lemma 4.2. Let 1 < p <∞. For f ∈ C and ε > 0 define

Fε(t, x) :=
(

|P̃1/2(t)f(x)|2 + ε2
)
1/2
, t > 0, x ∈ E.

Then F p
ε (t, ·) ∈ D(L) and

(D2
t + L)F p

ε (t, x) > 0 for µ∞-almost all x ∈ E.(4.1)

Moreover, for µ∞-almost all x ∈ E, the following estimate holds for all t > 0 :

(4.2)
2|L̃1/2P̃1/2(t)f(x)|2 + ‖(DHP̃1/2(t)f)(x)‖2

H

6 α−1
p |P̃1/2(t)f(x)|2−p lim inf

ε↓0
(D2

t + L)F p
ε (t, x),

where αp := 1
2p(p− 1).

For p > 2, the inequality (4.1) should be interpreted by multiplying both sides with

|P̃1/2(t)f(x)|p−2.

Proof. For µ∞-almost all x ∈ E we have

D2
tF

2
ε (t, x) = D2

t |P̃1/2(t)f(x)|2

= 2(I − L)P̃1/2(t)f(x) · P̃1/2(t)f(x) + 2|L̃1/2P̃1/2(t)f(x)|2.

Also, by Lemma 3.8, F 2
ε = (P̃1/2(t)f)2 + ε2 ∈ D(L) and

LF 2
ε (t, x) = 2LP̃1/2(t)f · P̃1/2(t)f(x) + ‖DHP̃1/2(t)f(x)‖2

H .
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It follows that

(D2
t + L)F 2

ε (t, x) > 2|L̃1/2P̃1/2(t)f(x)|2 + ‖DHP̃1/2(t)f(x)‖2
H =: g(t, x),(4.3)

which gives the result for p = 2.
We continue with the case p 6= 2. For µ∞-a.a. x ∈ E we have, for all t > 0,

D2
tF

p
ε (t, x) = D2

t (F
2
ε )

p/2(t, x)

=
p

2
(F 2

ε )
(p−2)/2(t, x)D2

tF
2
ε (t, x) +

p

2

p− 2

2
(F 2

ε )
(p−4)/2(t, x)

(

DtF
2
ε (t, x)

)2
.

To compute LF p
ε we choose a non-negative function ϕε ∈ C2

b (R) such that ϕε(t) =√
t+ ε2 for t ∈ [0, ‖f‖2

∞]. Noting that d
dtϕ

p
ε(t) = p

2ϕ
p−2
ε (t) and D2

tϕ
p
ε(t) =

p
2

p−2
2 ϕp−4

ε (t) on the interval [0, ‖f‖2
∞], from Lemma 3.9 we obtain F p

ε ∈ D(L)
and

LF p
ε (t, x) = L(ϕp

ε ◦ |P̃1/2(t)f(x)|2)

=
p

2
F p−2

ε (t, x)LF 2
ε (t, x) +

1

2

p

2

p− 2

2
F p−4

ε (t, x)‖DHF
2
ε (t, x)‖2

H .

Hence,
(4.4)

(D2
t + L)F p

ε (t, x) =
p

2
F p−2

ε (t, x)(D2
t + L)F 2

ε (t, x)

+
p

2

p− 2

2
F p−4

ε (t, x)
(

(

DtF
2
ε (t, x)

)2
+

1

2
‖DHF

2
ε (t, x)‖2

H

)

.

Observe that

|DtF
2
ε (t, x)| = 2|L̃1/2P̃1/2(t)f(x)| |P̃1/2(t)f(x)|

and, by Lemma 3.3,

‖DHF
2
ε (t, ·)‖H = 2‖DHP̃1/2(t)f(·)‖H |P̃1/2(t)f(·)|.

Inserting these identities into (4.4) and using (4.3), we obtain

(D2
t + L)F p

ε (t, x)

=
p

2
F p−2

ε (t, x)(D2
t + L)F 2

ε (t, x) +
p

2
(p− 2)F p−4

ε (t, x) · |P̃1/2(t)f(x)|2g(t, x)

>
p

2
F p−4

ε (t, x)g(t, x)
(

F 2
ε (t, x) + (p− 2)|P̃1/2(t)f(x)|2

)

=
p

2
F p−4

ε (t, x)g(t, x)
(

(p− 1)|P̃1/2(t)f(x)|2 + ε2
)

.

Since the right hand side is non-negative for all 1 < p <∞, this implies (4.1). The
estimate (4.2) also follows, since

g(t, x) 6
2

p
lim inf

ε↓0

(

F 4−p
ε (t, x)

(

(p− 1)|P̃1/2(t)f(x)|2 + ε2
)−1

(D2
t + L)F p

ε (t, x)
)

6
2

p(p− 1)
|P̃1/2(t)f(x)|2−p lim inf

ε↓0
(D2

t + L)F p
ε (t, x).

�
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For f ∈ C we define the Littlewood-Paley-Stein function gH(f) : E → [0,∞] by

(gH(f))(x) =

(
∫ ∞

0

t
∥

∥DHP̃1/2(t)f(x)
∥

∥

2

H
dt

)
1/2

.(4.5)

Theorem 4.3. Let 1 < p 6 2. For all f ∈ C we have gH(f) ∈ Lp(E, µ∞) and

‖gH(f)‖Lp(E,µ∞) 6 Cp‖f‖Lp(E,µ∞),

where Cp :=
(

pC
p−1

)
(2−p)/2

α
−1/2
p with C the universal constant from Theorem 2.4.

Proof. For τ > 0 put

g
τ
H(f)(x) :=

(

∫ τ

0

t‖DHP̃1/2(t)f(x)‖2
H dt

)
1/2
.

It is our aim to prove that

(4.6) ‖gτ
H(f)‖p 6 Cp‖f‖p.

The lemma is then obtained by letting τ → ∞.
Fix f ∈ C . By integrating inequality (4.2) over [0, τ ] and applying Fatou’s

Lemma we obtain

(gτ
H(f)(x))2 6 α−1

p (f⋆(x))2−p lim inf
ε↓0

hε(τ, x),(4.7)

where f⋆ is the maximal function from the scalar-valued case of Theorem 2.4 and

hε(τ, x) :=

∫ τ

0

t(D2
t + L)F p

ε (t, x) dt.

Note that by (3.7) we have
∫

E

LF p
ε (t, ·) dµ∞ = 0.

Using Fubini’s theorem and an integration by parts, we obtain

(4.8)

∫

E

hε(τ, x) dµ∞(x) =

∫ τ

0

∫

E

t(D2
t + L)F p

ε (t, x) dµ∞(x) dt

=

∫ τ

0

∫

E

tD2
tF

p
ε (t, x) dµ∞(x) dt

=

∫

E

(

τDtF
p
ε (τ, x) −

∫ τ

0

DtF
p
ε (t, x) dt

)

dµ∞(x)

=

∫

E

τDtF
p
ε (τ, x) + F p

ε (0, x) − F p
ε (τ, x) dµ∞(x)

6 τ

∫

E

DtF
p
ε (τ, x) dµ∞(x) + ‖Fε(0, ·)‖p

p.

Since

DtF
p
ε (t, x) =

p

2
(F 2

ε (t, x))
(p−2)/2DtF

2
ε (t, x)

= pF p−2
ε (t, x) · L̃1/2 P̃1/2(t)f(x) · P̃1/2(t)f(x),
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we have
∫

E

DtF
p
ε (τ, x) dµ∞(x) 6 p

∫

E

F p−2
ε (τ, x) · |L̃1/2 P̃1/2(τ)f(x)| · |P̃1/2(τ)f(x)| dµ∞(x)

6 p

∫

E

F p−1
ε (τ, x)|L̃1/2 P̃1/2(τ)f(x)| dµ∞(x)

6 p‖F p−1
ε (τ, ·)‖ p

p−1
‖L̃1/2P̃1/2(τ)f‖p.

For a suitable constant kp,

‖F p−1
ε (τ, ·)‖ p

p−1
=

∥

∥

(

|P̃1/2(τ)f |2 + ε2
)
1/2∥

∥

p−1

p

6
∥

∥|P̃1/2(τ)f | + ε
∥

∥

p−1

p
6

(

‖P̃1/2(τ)f‖p + ε
)p−1

6 kp

(

‖P̃1/2(τ)f‖p−1
p + εp−1

)

6 kp

(

‖f‖p−1
p + εp−1

)

.

By putting these estimates together we obtain

τ

∫

E

DtF
p
ε (τ, x) dµ∞(x) 6 τpkp

(

‖f‖p−1
p + εp−1

)

‖P̃1/2(τ)L̃1/2f‖p.

Since the semigroup (P̃1/2(t))t>0 is uniformly exponentially stable in Lp(E, µ∞) we
conclude that

lim
τ→∞

τ

∫

E

DtF
p
ε (τ, x) dµ∞(x) = 0.(4.9)

By (4.1) and the first identity in (4.8) it follows that

t 7→
∫

E

hε(t, x) dµ∞(x)

is non-decreasing as a function of τ. Therefore it follows from (4.8) and (4.9) that

‖hε(τ, ·)‖1 =

∫

E

hε(τ, x) dµ∞(x) 6 lim
t→∞

∫

E

hε(t, x) dµ∞(x) 6 ‖Fε(0, ·)‖p
p.(4.10)

By (4.7) and Fatou’s Lemma we obtain

‖gτ
H(f)‖p

p =

∫

E

(|gτ
H(f)|2)p/2 dµ∞

6 α−p/2
p

∫

E

(f⋆)
p(2−p)/2 lim inf

ε↓0
h

p/2
ε (τ, ·) dµ∞

6 α−p/2
p lim inf

ε↓0

∫

E

(f⋆)
p(2−p)/2h

p/2
ε (τ, ·) dµ∞.

By Hölder’s inequality with the dual exponents 2/(2 − p) and 2/p,

‖gτ
H(f)‖p

p 6 α−p/2
p ‖(f⋆)

p(2−p)/2‖2/(2−p)
lim inf

ε↓0
‖hp/2

ε (τ, ·)‖2/p

= α−p/2
p ‖f⋆‖p(2−p)/2

p lim inf
ε↓0

‖hε(τ, ·)‖
p/2
1 .

Using (4.10) and the maximal inequality of Theorem 2.4 we obtain

‖gτ
H(f)‖p

p 6 α−p/2
p ‖f⋆‖p(2−p)/2

p lim inf
ε↓0

‖Fε(0, ·)‖
p2

/2
p

= α−p/2
p ‖f⋆‖p(2−p)/2

p ‖f‖p2
/2

p 6 α−p/2
p

( pC

p− 1

)
p(2−p)/2

‖f‖p
p.

�
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Corollary 4.4. For 1 < p 6 2 the non-linear operator f 7→ gH(f) admits a unique

continuous extension from Lp(E, µ∞) into Lp(E, µ∞) satisfying

(4.11) ‖gH(f)‖Lp(E,µ∞) 6 Cp‖f‖Lp(E,µ∞),

For f ∈ W 1,p
H (E, µ∞), gH(f) is given by the right-hand side of (4.5).

Proof. Let fn → f in Lp(E, µ∞) with each fn ∈ C , then from the inverse triangle
inequality in L2(R+, t dt;H) we obtain

‖gH(fn) − gH(fm)‖p 6 Cp‖fn − fm‖p.

Hence the sequence (gH(fn))n>1 is a Cauchy sequence in Lp(E, µ∞) and gH(f) :=
limn→∞ gH(fn) defines the unique continuous extension.

To prove the second statement, we note that by Proposition 3.5 and (4.11), the

mapping f 7→ DH P̃1/2(·)f is well-defined on C and admits a unique extension to a

bounded linear operator from Lp(E, µ∞) to Lp(E, µ∞;L2(R+, t dt;H)). We claim

that on W 1,p
H (E, µ∞) this extension is again given by f 7→ DH P̃1/2(·)f . To see this,

fix f ∈ W 1,p
H (E, µ∞) and choose fn → f in W 1,p

H (E, µ∞) with fn ∈ C . Then
DHfn → DHf in Lp(E, µ∞;H) and therefore for all t > 0 we have

DH P̃1/2(t)fn = T̃1/2(t)DHfn → T̃1/2(t)DHf = DHP̃1/2(t)f.

Fixing t > 0, we may pass to a subsequence such that

(4.12) lim
n→∞

DH P̃1/2(t)fn(x) = DH P̃1/2(t)f(x) for µ∞-almost all x ∈ E.

On the other hand, the sequence of functions DHP̃1/2(·)fn defines a Cauchy se-

quence in Lp(E, µ∞;L2(R+, t dt;H)). Let Φ ∈ Lp(E, µ∞;L2(R+, t dt;H)) be its

limit. Then we also have DH P̃1/2(·)fn → Φ in Lp(E, µ∞;Lp(R+, t dt;H)) = Lp(E×
R+, µ∞ × t dt;H), and by passing to a subsequence we may assume that

(4.13) lim
n→∞

DH P̃1/2(t)fn(x) = Φ(t, x) for (µ∞ × t dt)-almost all (x, t) ∈ E × R+.

Since both (t, x) 7→ DH P̃1/2(t)f(x) and (t, x) 7→ Φ(t, x) are jointly measurable, for
almost all t > 0 the identity (4.13) holds for µ∞-almost all x ∈ E. Combining this
with (4.12) we conclude that

DHP̃1/2(·)f = Φ in Lp(E, µ∞;L2(R+, t dt;H)).

This proves the claim.
Now let f ∈ W 1,p

H (E, µ∞) and choose functions fn ∈ C satisfying fn → f in

W 1,p
H (E, µ∞). Then, by the claim, in Lp(E, µ∞) we have

gH(f) = lim
n→∞

gH(fn) = lim
n→∞

(
∫ ∞

0

t
∥

∥DHP̃1/2(t)fn

∥

∥

2

H
dt

)
1/2

=

(
∫ ∞

0

t
∥

∥DH P̃1/2(t)f
∥

∥

2

H
dt

)
1/2

.

�

By combining the above results we obtain the main result of this paper.
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Theorem 4.5. Assume (A1) and let 1 < p 6 2. Then,

D((−L)
1/2) →֒ W 1,p

H (E, µ∞).

Moreover, there exists a constant K > 0 such that for all f ∈ D((−L)
1/2) we have

‖DHf‖Lp(E,µ∞;H) 6 K‖(I − L)
1/2f‖Lp(E,µ∞).

Proof. By Lemma 4.1, for f ∈ C we have L̃1/2f ∈ W 1,p
H (E, µ∞), and therefore

Proposition 3.5 and the second assertion in Corollary 4.4 imply that

g(DHf) = gH(L̃1/2f),

where

g(g) :=
(

∫ ∞

0

∥

∥tG̃1/2 T̃1/2(t)g
∥

∥

2 dt

t

)
1/2
.

By Theorem 2.5 (which can be applied by the remark after Assumption (A1)) and
Corollary 4.4 we obtain for all f ∈ C ,

‖DHf‖p 6 c−1‖g(DHf)‖p = c−1‖gH(L̃1/2f)‖p 6 c−1Cp‖L̃1/2f‖p.

Since C is a core for D(L1/2) = D(L̃1/2) and DH is closed, the result follows from
this. �

Remark 4.6. If f ∈ Lp(E, µ∞), then P̃1/2(t)f ∈ D(L1/2) by analyticity, and there-

fore P̃1/2(t)f ∈ W 1,p
H (E, µ∞) by the theorem. This shows that the right-hand side

of equation (4.5) makes sense for all f ∈ Lp(E, µ∞), and by an approximation
argument we see that it equals gH(f) µ∞-almost everywhere.

We obtain the following inclusion for the domain of the Ornstein-Uhlenbeck
operator.

Theorem 4.7. Assume (A1) and let 1 < p 6 2. Then,

D(L) →֒ W 2,p
H (E, µ∞).

Moreover, there exists a constant K > 0 such that for all f ∈ D(L) we have

(4.14) ‖D2
Hf‖Lp(E,µ∞;H) 6 K‖(I − L)f‖Lp(E,µ∞).

Proof. Using the same methods as above, cf. [3], one can show that for 1 < p 6 2 the
following extension of the Littlewood-Paley-Stein inequality for H-valued functions
holds:

‖gH⊗2(g)‖p 6 C′
p‖g‖p, g ∈ Lp(E, µ∞;H)

where

gH⊗2(g) :=

(
∫ ∞

0

t
∥

∥DH T̃1/2(t)g(x)
∥

∥

2

H⊗2 dt

)
1/2

, g ∈ C ⊗H.

As in Theorem 4.5 it follows that

‖DHg‖Lp(E,µ∞;H⊗2) 6 K ′‖G̃1/2g‖Lp(E,µ∞),

Using this we obtain for f ∈ C

‖D2
Hf‖p 6 K ′‖G̃1/2DHf‖p = K ′‖DHL̃1/2f‖p

6 K ′K ′′‖L̃1/2 L̃1/2f‖p = K ′K ′′‖(I − L)f‖p.
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This proves (4.14). Since also

‖DHf‖p 6 K‖L̃1/2f‖p 6 K‖(I − L)−
1/2‖p→p‖(I − L)f‖p

we obtain the desired domain inclusion. �

The estimate (4.14) can be improved if we make an additional spectral gap
assumption. Define the projection π0 ∈ L (Lp(E, µ∞)) by π0f := Ef · 1, where
Ef :=

∫

E
f dµ∞, and put

Lp
0(E, µ∞) := R(I − π0) = {f ∈ Lp(E, µ∞) : Ef = 0}.

We denote the parts of P and L in Lp
0(E, µ∞) by P0 and L0.

Lemma 4.8. Let 1 6 p < ∞. Then for all f ∈ D((−L)
1/2) we have (−L)

1/2f ∈
Lp

0(E, µ∞).

Proof. Since µ∞ is an invariant measure it follows that P (t)Lp
0(E, µ∞) ⊆ Lp

0(E, µ∞)

and consequently (−L)
1/2Lp

0(E, µ∞) ⊆ Lp
0(E, µ∞). Using this and the fact that

(−L)
1/21 = 0 we obtain (−L)

1/2f = (−L)
1/2(I − π0)f ∈ Lp

0(E, µ∞). �

It is shown in [9, Theorem 7.5] that if (A1) holds, then one has a continuous
inclusion

H∞ →֒ H

if and only if the semigroup S∞ is uniformly exponentially stable on H∞. By stan-
dard arguments, cf. [19, Lemma 4.2], this implies that P is uniformly exponentially
stable on Lp

0(E, µ∞).

Theorem 4.9. Assume (A1) and let 1 < p 6 2. If H∞ →֒ H, then there exists a

constant C > 0 such that for f ∈ D((−L)
1/2) the following estimate holds:

‖DHf‖Lp(E,µ∞;H) 6 C‖(−L)
1/2f‖Lp(E,µ∞).

Proof. Since the semigroup P0 is uniformly exponentially stable on Lp
0(E, µ∞) we

have 0 ∈ ̺(L0) and (−L0)
−1/2 is well defined as a bounded operator on Lp

0(E, µ∞).

Since R((−L0)
−1/2) = D((−L0)

1/2) ⊆ D((−L)
1/2) it follows from Theorem 4.5 and

the closed graph theorem that DH(−L0)
−1/2 is well defined and bounded as an

operator from Lp
0(E, µ∞) into Lp(E, µ∞;H). This implies that for f ∈ D((−L)

1/2)
we have, with f0 = (I − π0)f ,

‖DHf‖p = ‖DHf0‖p 6 ‖DH(−L0)
−1/2‖p→p‖(−L0)

1/2f0‖p

= ‖DH(−L0)
−1/2‖p→p‖(−L)

1/2f‖p.

�

5. The symmetric case

In the case that the Ornstein-Uhlenbeck semigroup P is symmetric on L2(E, µ∞)
we can characterize the exact domain of L in Lp(E, µ∞) for 1 < p < ∞ using the

methods of [3]. For this purpose we define, for f ∈ FC1,1
b (E) of the form (3.1),

DA∞
f(x) := A∗

∞DH∞
f(x) =

k
∑

j=1

Djφ(〈x, x∗1〉, . . . , 〈x, x∗k〉)A∗
∞i

∗
∞x

∗
j .



THE DOMAIN OF ORNSTEIN-UHLENBECK OPERATORS 19

The operator DA∞
is closable from Lp(E, µ∞) into Lp(E, µ∞;H∞); the domain of

its closure is denoted by W 1,p
A∞

(E, µ∞).

Theorem 5.1. Assume that P is symmetric on L2(E, µ∞) and let 1 < p < ∞.
Then,

D((−L)
1/2) = W 1,p

H (E, µ∞), D(L) = W 2,p
H (E, µ∞) ∩W 1,p

A∞
(E, µ∞)

with equivalence of norms.

Sketch of the proof. First, by repeating the arguments of [3, Lemma 4.2], one es-
tablishes Theorem 4.2 for all 1 < p < ∞. From this, the first identification fol-
lows as in the proof of [3, Theorem 4.3, Lemma 5.1 and Theorem 5.2]. The sec-
ond identification follows from the first by similar arguments as in [3, Theorem
5.3]. To see that the norm on D(L) thus obtained is equivalent to the norm of

W 2,p
H (E, µ∞) ∩ W 1,p

A∞
(E, µ∞) we note that for f ∈ C the self-adjointness of AH

implies

‖(−AH)
1/2DHf(x)‖2

H = [(−AH)
1/2B∗Df(x), (−AH)

1/2B∗Df(x)]H

= −〈BAHB
∗Df(x), Df(x)〉

= −〈QA∗Df(x), Df(x)〉.
Using the identity Q = −2AQ∞ this gives

‖(−AH)
1/2DHf(x)‖2

H = 2〈AQ∞A
∗Df(x), Df(x)〉

= 2[i∗∞A
∗Df(x), i∗∞A

∗Df(x)]H∞

= 2‖A∗
∞i

∗
∞Df(x)‖2

H∞

= 2‖A∗
∞DH∞

f(x)‖2
H∞

= 2‖DA∞
f(x)‖2

H∞
.

The remaining details are left to the reader. �

Proceeding as in [3], the domains D((−L)
m/2), m = 1, 2, . . . , can be characterized

in a similar way.
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