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Abstract. We give a short overview on a recently developed notion of Ricci curvature
for discrete spaces. This notion relies on geodesic convexity properties of the relative
entropy along geodesics in the space of probability densities, for a metric which is similar
to (but different from) the 2-Wasserstein metric. The theory can be considered as a dis-
crete counterpart to the theory of Ricci curvature for geodesic measure spaces developed
by Lott–Sturm–Villani.

1. Ricci curvature lower bounds for geodesic measure spaces

In the last decade, ideas from the theory of optimal transport have led to significant
progress in the analysis and geometry on non-smooth spaces. The starting point for
these developments were the independent works by Lott and Villani [21] and Sturm [30],
who introduced a notion of Ricci curvature for metric measure spaces based on a beautiful
connection between optimal transport and entropy that originates in McCann’s pioneering
work [23].

Let (X , d) be a complete and separable metric space and let P(X ) be the space of
Borel probability measures on X . For 1 ≤ p < ∞ and µ, ν ∈ P(X ) we consider the
Monge-Kantorovich metric Wp (often called Wasserstein metric), defined by

Wp(µ, ν) := inf
Γ∈Π(µ,ν)

(∫
X×X

d(x, y)p dΓ(x, y)

)1/p

for µ, ν ∈P(X ) ,

where Π(µ, ν) denotes the set of all couplings of µ and ν, i.e., all probability measures
Γ ∈P(X × X ) satisfying

Γ(A×X ) = µ(A) and Γ(X × A) = ν(A)

for all Borel sets A ⊆ X . Loosely speaking, Wp(µ0, µ1)p is the minimal transportation cost
required to transport an amount of mass from its initial configuration µ to a prescribed
final configuration ν, at a cost of d(x, y)p per unit. It can be shown that Wp defines a
metric on Pp(X ), the space of probability measures with finite p-th moment. Moreover,
if (X , d) is a geodesic space (i.e., every pair of points x0, x1 ∈ X can be joined by a curve
γ : [0, 1] → X such that d(γ(s), γ(t)) = |s − t|d(x0, x1) for all s, t ∈ [0, 1]), then the
2-Wasserstein space (P2(X ),W2) is a geodesic space as well.

The final version of this manuscript will appear in Modern Approaches to Discrete Curvature (eds. L.
Najman and P. Romon), Springer Lecture Notes in Mathematics.
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Given a reference measure ν ∈P(X ), the relative entropy with respect to ν is defined
by

Entν(µ) :=

∫
X
ρ(x) log ρ(x) dν(x)

whenever µ ∈ P(X ) is absolutely continuous with density ρ = dµ
dν

, provided that the
integral is well-defined. If ν is a probability measure, this quantity takes values in [0,+∞].

The following result, proved in [28, 9, 29], characterises Ricci curvature lower bounds
on Riemannian manifolds in terms of convexity properties of the relative entropy (with
respect to the volume measure) and optimal transport.

Theorem 1 (Characterisation of Ricci lower bounds on Riemannian manifolds). Let
κ ∈ R. For a complete Riemannian manifold M, the following assertions are equivalent:

(1) Ric ≥ κ on M.
(2) Each pair of probability measures µ0, µ1 ∈ P2(M) can be connected by a con-

stant speed W2-geodesic (µt)t∈[0,1] along which the entropy satisfies the κ-convexity
inequality

Entvol(µt) ≤ (1− t) Entvol(µ0) + tEntvol(µ1)− κ

2
t(1− t)W2(µ0, µ1)2 .

While the definition of the Ricci tensor requires a Riemannian structure on the un-
derlying space, the second condition makes sense in much greater generality: the sole
requirements are a metric (to define the Wasserstein metric) and a measure (to define the
relative entropy). Therefore the following definition makes sense:

Definition 2 (Lott–Sturm–Villani). Let κ ∈ R. A metric measure space (X , d, ν) is said
to have “Ricci curvature bounded from below by κ” if every pair of probability measures
µ0, µ1 ∈ P2(X ) can be connected by a constant speed W2-geodesic (µt)t∈[0,1] along which
the relative entropy Entν satisfies the κ-convexity inequality

Entν(µt) ≤ (1− t) Entν(µ0) + tEntν(µ1)− κ

2
t(1− t)W2(µ0, µ1)2 .

This definition has become the starting point for many interesting developments in
the analysis and geometry on metric measure spaces. A large number of geometric and
functional inequalities with sharp constants can be derived from this definition. A crucial
feature of the theory is its robustness, i.e., the stability of lower Ricci curvature bounds
under convergence of metric measure space in the sense of measured Gromov–Hausdorff
convergence. A stronger version of Definition 2, a curvature-dimension criterion, has
been introduced in [21, 30] as well. We refer to [31] for an overview of this theory. More
recently, important refinements of the curvature-dimension criterion have been introduced
in [2, 13].

1.1. Discrete spaces. If (X , d) is a geodesic space, the Lott–Sturm–Villani criterion is
non-trivial, since we have already mentioned that the 2-Wasserstein space (P2(X ),W2)
is a geodesic space as well. If (X , d) is discrete, the situation turns out to be completely
different. Indeed, suppose that (µt)t∈[0,1] is W2-Lipschitz, i.e., W2(µs, µt) ≤ L|s − t|
for some L < ∞. Fix a point x ∈ X and set m(t) := µt({x}). Since X is discrete,
there exists δ > 0 such that all other points are at least at distance δ from x. As a
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consequence, W2(µs, µt) ≥ δ
√
|m(t)−m(s)|. Combining the estimates above, we infer

that t 7→ m(t) is Hölder continuous with exponent 2, hence m is constant. Since x was
arbitrary, we conclude that every W2-Lipschitz curve is constant. In particular, there are
no W2-geodesics, so that the Lott–Sturm–Villani criterion is (trivially) not satisfied for
any κ ∈ R.

While the curvature concept based on geodesic convexity of the entropy has been ex-
tremely powerful in the continuous (geodesic) setting, these observations show that the
2-Wasserstein metric is not the appropriate object for an analogous discrete theory.

To motivate the definition of a suitable discrete counterpart of W2, we shall describe a
seminal result in the continuous setting in which the Wasserstein metric plays a central
role.

2. The heat flow as gradient flow of the entropy

It is a classical fact that the heat equation ∂tu = ∆u can be regarded as the gradient
flow equation in L2(Rn) for the Dirichlet energy E : L2(Rn)→ R ∪ {+∞} given by

E(u) =

{
1
2

∫
Rn |∇u(x)|2 dx , u ∈ H1(Rn) ,

+∞ , otherwise.

A quite different gradient flow structure for the heat equation, physically very appealing,
was discovered by Jordan, Kinderlehrer, and Otto [19] at the end of the 1990s.

Theorem 3 (Heat flow is gradient flow of the entropy). The heat equation ∂tρ = ∆ρ is
the gradient flow equation for the Boltzmann-Shannon entropy in the 2-Wasserstein space
(P2(Rn),W2).

Note that the meaning of this statement is not clear a priori . While gradient flows are
traditionally considered in smooth (e.g. Riemannian or Hilbertian) settings, the statement
of this result involves the notion of a gradient flow in a metric space, in which the notion
of a gradient is not defined.

In the original paper [19], the result was made rigorous using the discrete minimising
movement scheme given by

µ(0) := µ0 , µ(k+1) := argminσ∈P(Rn)

(
Ent(σ) +

1

2h
W2(µ(k), σ)2

)
The authors showed that the piecewise constant functions (µh) defined by

µh(t) := µ(k) , t ∈ [kh, (k + 1)h) ,

converge, as h ↓ 0, to the solution of the heat equation ∂tµ = ∆µ with initial condition
µ|t=0 = µ0. It is also possible to interpret Theorem 3 using the theory of gradient flows
in metric spaces, which has been systematically developed in [1].

Another interpretation of this result can be given in terms of a formal infinite-dimen-
sional Riemannian structure on the space of probability measures [27]. This structure
is closely related to the so-called Benamou-Brenier formula, which provides a dynamical
characterisation of the 2-Wasserstein metric inspired by fluid mechanics.
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2.1. The Benamou-Brenier formula. Fix two probability measures µ0, µ1 ∈P2(Rn).
Instead of considering couplings as in the Monge–Kantorovich problem, we consider
continuous-time interpolations (µt)t∈[0,1] between µ0 and µ1. Under mild regularity con-
ditions, such interpolations satisfy the continuity equation (in the sense of distributions)

∂tµt +∇·(µtvt) = 0 (1)

for a suitable time-dependent velocity vector field v : [0, 1] × Rn → Rn. The remarkable
Benamou–Brenier formula [4] asserts that the squared Wasserstein distance is obtained
by minimising the total kinetic energy among all solutions to the continuity equation.
More precisely,

W2(µ0, µ1)2 = inf
(µt,vt)t

{∫ 1

0

∫
Rn
|vt(x)|2 dµt(x) dt

}
, (2)

where the infimum runs over all sufficiently regular solutions (µt, vt)t∈[0,1] to (1) with
boundary conditions µ|t=0 = µ0 and µ|t=1 = µ1.

Given a sufficiently regular curve of probability measures (µt)t∈(−ε,ε), there are many
different velocity vector fields v that satisfy the continuity equation (1) at t = 0. However,
it turns out that only one of those vector fields is a generalised gradient, in the sense that
it belongs to the closure of {∇ψ : ψ ∈ C∞c (Rn)} in L2(Rn, µ0;Rn). This vector field
minimises the kinetic energy

∫
Rn |v(x)|2 dµ0(x) among all vector fields v satisfying the

continuity equation at t = 0, see, e.g., [1, Section 8] for details.
It was realised by Otto [27] that the Benamou–Brenier formula can be regarded as

the Riemannian distance formula associated to a formal infinite-dimensional Riemannian
structure on P2(Rn), which can be described as follows:

• Given a smooth curve (µt)t∈(−ε,ε) in P2(Rn) with µ0 = µ, let v = ∇ψ be the
unique (generalised) gradient vector field satisfying the continuity equation ∂tµt +
∇·(µ∇ψ) = 0 at time 0. The velocity vector field ∇ψ is regarded as the tangent
vector at µ ∈ P2(Rn) associated to the curve (µt)t∈(−ε,ε). Thus, by means of
the continuity equation, the tangent space at µ is identified with the space of
generalised gradients.
• Taking this identification into account, the tangent space at µ ∈ P(Rn) will be

endowed with the L2(µ)-scalar product:

〈∇ψ1,∇ψ2〉Tµ :=

∫
Rn
〈∇ψ1(x),∇ψ2(x)〉 dµ(x) .

It is then clear that the Benamou–Brenier formula is precisely the formula for the Riemann
distance induced by this formal infinite-dimensional Riemannian structure.

3. A gradient flow structure for reversible Markov chains

We shall now describe a (standard) discrete framework in which an analogue of Theorem
3 has been obtained.

Let L : RX → RX be the generator of a continuous time Markov chain on a finite set
X . Thus L is given by

(Lψ)(x) :=
∑
y∈X

Q(x, y)(ψ(y)− ψ(x)) ,
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where Q(x, y) ≥ 0 denotes the transition rate from x to y. We shall use the convention
that Q(x, x) = 0 for all x ∈ X . Assuming that the Markov chain is irreducible, there
exists a unique invariant probability measure π on X , which means that

(L∗π)(x) :=
∑
y∈X

π(y)Q(y, x)− π(x)Q(x, y) = 0 , x ∈ X .

We shall assume in addition that π is reversible, i.e., the detailed balance equations

π(x)Q(x, y) = π(y)Q(y, x)

hold for all x, y ∈ X . This assumption implies that L is selfadjoint as an operator
on L2(X , π). The associated Markov semigroup (etL)t≥0 may be regarded as a discrete
analogue of the heat semigroup. Note that the set of probability densities

D(X ) :=
{
ρ : X → R+ |

∑
x∈X

ρ(x)π(x) = 1
}

is invariant under the action of the semigroup (etL)t≥0.
Let H : D(X )→ R be the relative entropy functional given by

H(ρ) :=
∑
x∈X

ρ(x) log ρ(x) π(x) .

It is straighforward to check that H decreases along solutions to the discrete “heat equa-
tion” ∂tρ = Lρ. In view of Theorem 3 one might wonder whether this equation has a
gradient flow structure for the relative entropy with respect to the 2-Wasserstein metric
(for a suitable metric on X ). However, the discussion at the end of Section 1 demonstrates
that this is not the case: since the 2-Wasserstein space does not contain any Lipschitz
curves, there aren’t any gradient flows at all!

However, it turns out to be possible to construct a different metric on P(X ), which
allows one to prove a discrete analogue of the JKO-Theorem. The construction is inspired
by the Benamou–Brenier formula (2).

3.1. Discrete transport metrics. In order to define suitable discrete transport metrics,
it will be necessary to state a discrete version of the continuity equation (1). For this
purpose, let E := {(x, y) : Q(x, y) > 0} be the set of edges in the incidence graph induced
by Q, and set w(x, y) := Q(x, y)π(x). The discrete gradient is given by

∇ : L2(X , π)→ L2(E , w) , ∇ψ(x, y) := ψ(y)− ψ(x) .

This operator maps functions (defined on X ) to vector fields (defined on E). The negative
of its adjoint is the discrete divergence given by

∇· : L2(E , w)→ L2(X , π) , (∇ · V )(x) :=
1

2

∑
y∈X

Q(x, y)(V (x, y)− V (y, x)) .

Note however that a problem arises if one attempts to formulate a discrete analogue of the
continuity equation (1). Namely, the divergence term contains the product of the density
ρ (defined on X ) and the velocity vector field V (defined on E). Since these objects are
defined on different spaces, there is no canonical way to multiply them, hence there is no
canonical discretisation of the continuity equation.
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In fact, there is additional freedom that we need to exploit: given a probability density
ρ ∈ D(X ), we introduce the quantity ρ̂ : E → R by

ρ̂(x, y) := θ(ρ(x), ρ(y)) , (3)

where θ : R+×R+ → R+ is a symmetric continuous function, smooth and strictly positive
on (0,∞) × (0,∞), which will be carefully chosen below. In many applications, θ(r, s)
will be a suitable mean of r and s. Having introduced this quantity, the natural discrete
analogue of the continuity equation (1) is given by ∂tρ+∇ · (ρ̂V ) = 0, or more explicitly,

∂tρt(x) +
1

2

∑
y∈X

(
Vt(x, y)− Vt(y, x)

)
ρ̂t(x, y)Q(x, y) = 0 (4)

The following definition is now a natural discrete analogue of the Benamou–Brenier for-
mula.

Definition 4 (Discrete transport metric). For ρ0, ρ1 ∈ D(X ) we define

W(ρ0, ρ1)2 = inf
ρ,V

{
1

2

∫ 1

0

∑
x,y∈X

|Vt(x, y)|2ρ̂t(x, y)Q(x, y)π(x) dt

}
, (5)

where the infimum runs over all pairs (ρt, Vt)t∈[0,1] solving the continuity equation (4) with
boundary conditions ρ|t=0 = ρ0 and ρ|t=1 = ρ1.

Note that the definition depends on the Markov triple (X , Q, π) as well as on the choice
of the function θ. As in the continuous setting, it is possible to show that one may
restrict the infimum to vector fields (Vt)t∈[0,1] of gradient type, i.e., one may assume that
Vt(x, y) = ∇ψt(x, y) for some function ψt : X → R. One can show that W(ρ0, ρ1) < ∞
if ρ0, ρ1 are everywhere strictly positive. If ρ0 or ρ1 vanishes somewhere, then W(ρ0, ρ1)
may be finite or infinite, depending on the choice of θ.

3.2. A Riemannian structure on the space of probability measures. The distance
W is induced by a Riemannian structure on D∗(X ), the space of strictly positive proba-
bility densities on X . This structure is a natural discrete analogue of the one described in
Section 2.1. Indeed, given a smooth curve (ρt)t∈(−ε,ε) in D∗(X ) with ρ0 = ρ, there exists
a unique discrete gradient ∇ψ satisfying the discrete continuity equation

∂tρt(x) +
∑
y∈X

(
ψt(y)− ψt(x)

)
ρ̂t(x, y)Q(x, y) = 0 (6)

at time 0. As before, we shall regard ∇ψ as the tangent vector at ρ associated to the
curve (ρt)t∈(−ε,ε). We thus identify the tangent space at ρ with the set of discrete gradients.
Under this identification, we define a scalar product on the tangent space at ρ ∈P(Rn)
by

〈∇ψ1,∇ψ2〉Tρ :=
1

2

∑
x,y∈X

(
ψ1(x)− ψ1(y)

)(
ψ2(x)− ψ2(y)

)
ρ̂(x, y)Q(x, y)π(x) .

The induced Riemannian distance coincides with (5), since it is not hard to show that the
minimising vector field v in (5) is a discrete gradient for every t ∈ (0, 1).
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3.3. The discrete JKO-Theorem. We are now in a position to obtain an analogue of
Theorem 3 in the discrete setting. Let us first compute the gradient of the relative entropy
H in the Riemannian structure described above. For this purpose, take a smooth curve
(ρt)t in D∗(X ) satisfying the discrete continuity equation (6). Using the detailed balance
assumption, it follows that

∂tH(ρt) =
∑
x∈X

(
1 + log ρt(x)

)
∂tρt(x)π(x)

= −
∑
x,y∈X

(
1 + log ρt(x)

)(
ψt(y)− ψt(x)

)
ρ̂t(x, y)Q(x, y)π(x)

=
1

2

∑
x,y∈X

(
log ρt(x)− log ρt(y)

)(
ψt(x)− ψt(y)

)
ρ̂t(x, y)Q(x, y)π(x)

= 〈∇ log ρt,∇ψt〉Tρt
On the other hand, by the definition of the gradient in the Riemannian structure inducing
W , we have ∂tH(ρt) = 〈gradW H(ρt),∇ψt〉Tρt . Since the computation above holds for any
curve (ρt)t (hence for any vector field ∇ψt), we infer that

gradW H(ρ) = ∇ log ρ (7)

for ρ ∈ D∗(X ). It follows from this identity that the gradient flow equation for H (in the
Riemannian structure associated to W) is given by the discrete continuity equation (6)
together with the additional equation ∇ψt = −∇ log ρt. More explicitly, we arrive at

∂tρt(x)−
∑
y∈X

(
log ρt(y)− log ρt(x)

)
ρ̂t(x, y)Q(x, y) = 0 .

Of course, this equation depends on the choice of θ in (3), since the Riemannian metric
depends on θ. Note however that this equation reduces to the discrete heat equation
∂tρ = Lρ if we choose θ in such a way that (log ρ(y)− log ρ(x))ρ̂(x, y) = ρ(y)− ρ(x). In
other words, if θ is the logarithmic mean defined by

θlog(r, s) :=
r − s

log r − log s
=

∫ 1

0

r1−psp dp ,

we obtain the following discrete JKO-Theorem:

Theorem 5 (Discrete JKO). The gradient flow equation for the relative entropy H with
respect to W is given by the discrete heat equation ∂tρ = Lρ, provided θ = θlog.

This result has been obtained in the independent papers [22] (in the setting of Markov
chains) and [24] (in the setting of reaction-diffusion systems). Related gradient flow struc-
tures for Fokker-Planck equations on graphs have been discovered in [8]. A modification
of the proof above shows that the discrete porous medium equations ∂tρ = ∆ϕ(ρ) can
be formulated as gradient flow for the entropy functional F(ρ) =

∑
x∈X f(ρ(x))π(x) with

respect to the metric W , provided that θ(r, s) = ϕ(r)−ϕ(s)
f ′(r)−f ′(s) for some increasing function ϕ

and some convex function f , cf. [15].
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4. Discrete Entropic Ricci curvature

In view of the gradient flow result of Theorem 5, the metric W (with θ = θlog) can
be viewed as a natural discrete counterpart of the Wasserstein metric W2. The following
definition, proposed in [22], is a discrete analogue of Definition 2 by Lott–Sturm–Villani.

Definition 6 (Discrete entropic Ricci curvature). Let κ ∈ R. A reversible Markov chain
(X , Q, π) is said to have “Ricci curvature bounded from below by κ” if every pair of
probability densities ρ0, ρ1 ∈ D∗(X ) can be connected by a constant speed W-geodesic
(ρt)t∈[0,1] along which the relative entropy H satisfies the κ-convexity inequality

H(ρt) ≤ (1− t)H(ρ0) + tH(ρ1)− κ

2
t(1− t)W(ρ0, ρ1)2 .

We shall use the notation Ric(X , Q, π) ≥ κ for brevity.
The restriction to probability densities ρ0, ρ1 ∈ D∗(X ) is not essential: if θ = θlog it can

be shown that W is finite on the full space D(X ), and the condition in Definition 6 may
be imposed for all ρ0, ρ1 ∈ D(X ) without changing the definition.

It has been shown in [14] that several discrete analogues of classical continuous results
can be obtained from this definition. The following result is a discrete analogue of a
classical result by Bakry and Émery [3].

Theorem 7 (Discrete Bakry–Émery). If Ric(X , Q, π) ≥ κ for some κ > 0, then the
modified logarithmic Sobolev inequality

H(ρ) ≤ 1

2κ
I(ρ) (MLSI(κ))

holds for all ρ ∈ D∗(X ), where

I(ρ) :=
1

2

∑
x,y∈X

(
log ρ(x)− log ρ(y)

)(
ρ(x)− ρ(y)

)
Q(x, y)π(x)

is a discrete version of the Fisher information.

There are different (non-equivalent) versions of the logarithmic Sobolev inequality that
appear in discrete settings. The relevance of the inequality (MLSI(κ)) is due to the fact
that it implies the exponential convergence result H(ρt) ≤ e−2κtH(ρ0) for solutions to the
discrete heat equation ∂tρ = Lρ.

The following result from [14] is a discrete version of a celebrated result by Otto and
Villani [28].

Theorem 8 (Discrete Otto–Villani). If (X , Q, π) satisfies (MLSI(κ)) for some κ > 0,
then the modified Talagrand inequality

W(ρ,1) ≤
√

2

κ
H(ρ) (TW(κ))

holds for all ρ ∈ D(X ).

In this result, 1 denotes the constant probability density corresponding to the invariant
measure π. The analogous inequality withW replaced by W2 has been extensively studied
in continuous settings, but it is not hard to see that it can never hold in the discrete
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case. The inequality (TW(κ)) provides a natural discrete substitute, which captures two
different phenomena. On the one hand, (TW(κ)) contains spectral information, since it
implies the Poincaré inequality (or spectral gap inequality)

‖ϕ‖2
L2(X ,π) ≤

1

κ
D(ϕ) (P(κ))

where D(ϕ) = 1
2

∑
x,y∈X

(
ϕ(x)− ϕ(y)

)2
Q(x, y)π(x) denotes the Dirichlet energy. On the

other hand, (TW(κ)) yields the T1-transport inequality

W1(ρ,1) ≤
√

2

κ′
H(ρ)

for a possibly different constant κ′, where W1 is the 1-Wasserstein distance induced by
the graph distance on the incidence graph of (X , Q, π). The latter inequality implies an
exponential concentration inequality for π with an explicit rate, cf. [14].

4.1. Discrete spaces with lower Ricci curvature bounds. As discrete entropic Ricci
curvature bounds have significant consequences for the Markov chains under considera-
tion, it is of interest to obtain sharp bounds for the Ricci curvature in concrete examples.
Since such bounds are defined in terms of convexity properties of the relative entropy H,
one needs to calculate the Hessian of H in the Riemannian structure inducingW . There-
fore, we would like to compute the second derivative of the entropy along W-geodesics.
The geodesic equations for W are given by the continuity equation (6) in conjunction
with the equations

∂tψt(x) +
1

2

∑
y∈X

(
ψt(x)− ψt(y)

)2
∂1θ(ρ(x), ρ(y))Q(x, y) = 0 , x ∈ X . (8)

This equation is reminiscent of the Hamilton-Jacobi equation ∂tψ + 1
2
|∇ψ|2 = 0, which

appears in the description of 2-Wasserstein geodesics in continuous settings. Note however
that the discrete equation (8) depends both on ρ and ψ, which is a source of additional
difficulties in the discrete setting. An explicit computation based on the equations (4)
and (8) shows that the second derivative of the entropy along a unit speed W-geodesics
(ρt)t is given by

∂2
t

∣∣
t=0
H(ρt) =

1

4

∑
x,y,z∈X

(
ψ(x)− ψ(y)

)2
(
∂1θ
(
ρ(x), ρ(y)

)(
ρ(z)− ρ(x)

)
Q(x, z)

+∂2θ
(
ρ(x), ρ(y)

)(
ρ(z)− ρ(y)

)
Q(y, z)

)
Q(x, y)π(x)

= −1

2

∑
x,y,z∈X

(
Q(x, z)

(
ψ(z)− ψ(x)

)
−Q(y, z)

(
ψ(z)− ψ(y)

))
×
(
ψ(x)− ψ(y)

)
ρ̂(x, y)Q(x, y)π(x) =: B(ρ, ψ) ,

Proving a bound of the form Ric(X , Q, π) ≥ κ thus corresponds to showing that

B(ρ, ψ) ≥ κ

2

∑
x,y

(ψ(x)− ψ(y))2ρ̂(x, y)Q(x, y)π(x) . (9)
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The right-hand side above may be seen as a discrete version of the continuous formula∫ (
1
2
|∇ψ|2∆ρ − 〈∇∆ψ,∇ψ〉ρ

)
dx. On a Riemannian manifold, such an expression can

be simplified after integration by parts with the help of Bochner’s identity, which asserts
that

1

2
∆
(
|∇ψt|2

)
− 〈∇ψt,∇∆ψt〉 =

1

2
|D2ψ|2 + Ric(∇ψ,∇ψ) .

Hence a lower bound on the Ricci curvature yields a corresponding bound for the Hessian
of the entropy. In the discrete case there doesn’t seem to be an exact analogue of Bochner’s
formula, and the challenge is to get around this difficulty in concrete examples of interest.

4.2. Examples. In recent years, discrete entropic Ricci curvature bounds have been ob-
tained in several concrete examples.

A result by Mielke [25] asserts that every reversible Markov chain on a finite state
space X satisfies Ric(X , Q, π) ≥ κ for some (possibly negative) κ ∈ R. Even though
the Riemannian manifold D∗(X ) is finite-dimensional, this result is non-trivial (and its
proof is rather delicate), since the Riemannian metric inducing W is degenerate at the
boundary of D∗(X ).

If the state space X has a one-dimensional structure, the situation is quite well under-
stood. Consider a birth-death chain (on a finite set {0, 1, . . . , N} for some N ≥ 1) with
transition rates Q(n, n+ 1) = a(n) and Q(n, n− 1) = b(n). In this situation, Mielke [25]
obtained the following lower bounds on the Ricci curvature for birth-death processes (see
also [17] for a different proof).

Theorem 9 (Ricci bounds for birth-death chains). Let κ ∈ [0,∞). Assume that the rate
of birth a is non-increasing, and that the rate of death b is a non-decreasing. Assume
moreover that

1

2

(
a(n)− a(n+ 1) + b(n+ 1)− b(n)

)
+

1

2
Θ
(
a(n)− a(n+ 1), b(n+ 1)− b(n)

)
≥ κ (10)

for all n = 0, . . . , N − 1, where

Θ(α, β) = inf
s,t>0

θ(s, t)

(
α

s
+
β

t

)
,

and θ(s, t) is the logarithmic mean of s and t. Then the birth-death process has Ricci
curvature bounded from below by κ.

In general this result does not give the optimal constants, but the result is asymptot-
ically sharp in the sense that one recovers the optimal Ricci curvature bounds for one-
dimensional Fokker-Planck equations by passing to the continuum limit after a suitable
rescaling, cf [25].

The following result, taken from [14], asserts that Ricci bounds are preserved under
taking product chains. If Li generates a Markov chain on Xi with reversible measure
πi for i = 1, 2, the corresponding product chain on X1 × X2 is the Markov chain with
transition semigroup etL := etL1 ⊗ etL2 . Note that the generator is given by

L⊗ = L1 ⊗ I + I ⊗ L2 .

We shall write Q⊗ accordingly. The product measure π1 ⊗ π2 is the reversible invariant
measure for L⊗.



DISCRETE ENTROPIC RICCI CURVATURE 11

Theorem 10 (Tensorisation of discrete entropic Ricci curvature). For i = 1, 2, let
(Xi, Qi, πi) be reversible Markov chains with lower Ricci bounds κi ∈ R. Then the as-
sociated product chain satisfies Ric(X1 ×X2, Q

⊗, π1 ⊗ π2) ≥ min{κ1, κ2}.

This result allows one to consider product chains in arbitrarily high dimension, without
any loss in the Ricci curvature constant. As a consequence, it can be proved that the
optimal Ricci curvature bound for simple random walk on the discrete cube {0, 1}N is
given by 2

N
. Similarly, it follows that the Ricci curvature for any regular rectangular

lattice in any dimension is non-negative.
Much less is known for Markov chains in multiple dimensions which do not have a

product structure, but there has been some recent progress in this direction. Using com-
binatorial methods, entropic Ricci curvature bounds have been obtained for the Bernoulli-
Laplace model, which describes a simple random walk on a slice of the discrete cube, as
well as for the random transposition model, which describes a random walk on the group
of permutations [16]. A more systematic method for proving discrete Ricci bounds, in-
spired by the work of [6] on functional inequalities, has been developed in [17] and applied
to zero-range processes on the complete graph.

We conclude by mentioning that there are several other interesting notions of discrete
Ricci curvature that have been actively studied in recent years. Important examples
include Ollivier’s Ricci curvature [26] and the Bakry-Émery criterion [3] and its variants. It

is not hard to show that the Bakry-Émery criterion can be obtained from the inequality (9)
that characterizes discrete entropic Ricci curvature, by replacing the logarithmic mean θlog

by the arithmetic mean. Since the proofs in [14, 16, 17] remain valid for the the arithmetic

mean, these papers also yield curvature bounds in the sense of Bakry-Émery. However,
there are examples in of Markov chains with non-negative entropic Ricci curvature that
have strictly negative Ricci curvature in the sense of Bakry-Émery [11]. We refer to other
chapters in this volume, in particular the contribution by F. Bauer, B. Hua, J. Jost, S. Liu
and G. Wang for a discussion of Ollivier’s Ricci curvature and the Bakry-Émery condition.

A discretisation of the Lott-Sturm-Villani theory based on the notion of approximate
W2-midpoints (different from the theory described in this note) was given by Bonciocat
and Sturm [5]. Convexity of the entropy in discrete settings has been investigated along
other interesting curves of probability measures in [18] and in [20].

Note added: After this short paper was written, several papers dealing with discrete
entropic Ricci curvature have appeared. In particular, Erbar and Fathi [10] obtained
various interesting functional inequalities under the assumption of non-negative entropic
Ricci curvature. Moreover, entropic Ricci curvature bounds have been proved for several
weakly interacting Markov chains (including Glauber dynamics for a class of spin systems)
by Erbar, Henderson, Menz, and Tetali [12]. Related functional inequalities have been
investigated by Che, Huang, Li, and Tetali [7].
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