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Abstract. This paper deals with dynamical optimal transport metrics defined by dis-
cretisation of the Benamou–Benamou formula for the Kantorovich metric W2. Such
metrics appear naturally in discretisations of W2-gradient flow formulations for dissi-
pative PDE. However, it has recently been shown that these metrics do not in general
converge to W2, unless strong geometric constraints are imposed on the discrete mesh.
In this paper we prove that, in a 1-dimensional periodic setting, discrete transport met-
rics converge to a limiting transport metric with a non-trivial effective mobility. This
mobility depends sensitively on the geometry of the mesh and on the nonlocal mobility
at the discrete level. Loosely speaking, the result quantifies to what extent discrete
transport can make use of microstructure in the mesh to reduce the cost of transport.

1. Introduction

In the past decades there has been intense research activity in the area of optimal trans-
port, cf. the monographs [Vil03, Vil08, San15, PC19] for an overview of the subject. In
continuous settings, a key result in the field is the Benamou–Brenier formula [BB00],
which expresses the equivalence of static and dynamic formulations of the optimal trans-
port problem. In discrete settings, the equivalence between static and dynamical optimal
transport breaks down, and it turns out that the dynamical formulation (introduced in
[Maa11, Mie11]) is essential in applications to evolution equations and discrete Ricci
curvature and functional inequalities, see, e.g., [CHLZ12, EM12, Mie13, EM14, EMT15,
FM16, EHMT17, EF18].

However, the limit passage from discrete dynamical transport to continuous optimal
transport turns out to be nontrivial. In fact, it has been shown in [GKM18] that seem-
ingly natural discretisations of the Benamou–Brenier formula do not necessarily converge
to the Kantorovich distance W2, even in one-dimensional settings. The main result in
[GKM18] asserts that, for a sequence of meshes on a bounded convex domain in Rd, an
isotropy condition on the meshes is required to obtain the convergence of the discrete
dynamical transport distances to W2.

It remained an open question to identify the limiting behaviour of the discrete metrics
in situations where the isotropy condition fails to hold. The aim of the current paper is
to answer this question in the one-dimensional periodic setting.

We start by informally introducing the main objects of study in this paper and present
the main result. For more formal definitions we refer to Section 2 below.

Continuous optimal transport. Let P(S) (resp. M (S)) denote the set of Borel
probability measures (resp. signed measures) on a Polish space (S, d). We will work on
the one-dimensional torus S1 = R/Z and use the convention that arithmetic operations
are understood modulo 1.
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The Kantorovich metric W2 (also known as Wasserstein metric) on P(S) is defined
by

W2
2(µ0, µ1) = inf

γ∈Γ(µ0,µ1)

{∫
S×S

d2(x, y) dγ(x, y)

}
(1.1)

for µ0, µ1 ∈P(S). Here, Γ(µ0, µ1) denotes the set of probability measures on S×S with
marginals µ0 and µ1 respectively. For µ0, µ1 ∈ P(S1) the Benamou–Brenier formula
yields the equivalent dynamical formulation

W2
2(µ0, µ1) = inf

µ,v

{∫ 1

0

∫
S1

|j|2

µ
: ∂tµ+ ∂xj = 0

}
, (1.2)

where the infimum runs over all curves µ : [0, 1]→P(S1) connecting µ0 and µ1, and all
vector fields j : [0, 1]×S1 → R satisfying the stated continuity equation. Here,

∫ 1

0

∫
S1
|j|2
µ

is to be understood as
∫ 1

0

∫
S1 |vt(x)|2 dµt(x) dt if j � v with dj

dµ
= v, and +∞ otherwise.

Discrete dynamical optimal transport. Let X be a finite set endowed with a refer-
ence probability measure π ∈P(X ). Let R : X ×X → R+ denote the transition rates of
an irreducible continuous time Markov chain on X . We assume that the detailed balance
condition holds, i.e., π(x)R(x, y) = π(y)R(y, x) for all x, y ∈ X .

Let {θxy}x,y∈X be a collection of admissible means, i.e., each θxy : R+ × R+ → R+ is
concave, 1-homogeneous, and satisfies θ(1, 1) = 1. We assume that θxy(a, b) = θyx(b, a)
for any a, b ≥ 0.

The discrete dynamical transport metric associated to (X , R, π) is defined by

W2(m0,m1) = inf
m,J

{
1

2

∫ 1

0

∑
x,y∈X

J2
t (x, y)

θxy
(
mt(x)R(x, y),mt(y)R(y, x)

) dt

}
.

Here the infimum runs over all curves m : [0, 1]→P(X ) connecting m0 and m1, and all
discrete vector fields J : [0, 1]→ V (X ) satisfying the discrete continuity equation

d

dt
mt(x) +

∑
y∈X

Jt(x, y) = 0 for all x ∈ X ,

where V (X ) denotes the set of all anti-symmetric functions V : X × X → R. The
definition of W is a direct analogue of (1.2) with one additional feature: between any
pair of points x and y an admissible mean θxy needs to be chosen to describe the mobility.

Discrete optimal transport on 1-dimensional meshes. In this paper we consider
discrete transport metrics induced by a finite volume discretisation of S1.

Fix 0 = r0 < . . . < r1 < . . . < rK = 1 for some K ≥ 1. We write πk := rk+1 − rk
and Ak := [rk, rk+1), so that T := {Ak}K−1

k=0 is a partition of S1 into disjoint half-open
intervals. We also consider a sequence of points {zk}K−1

k=0 such that each zk lies in the
interior of Ak. The distance between zk and zk′ in S1 will be denoted by dkk′ . Here and
below we will often perform calculations modulo K.

We endow the discrete state space T with the natural reference measure π ∈ P(T )
given by π(Ak) = πk. The main object of study in this paper is the transport metric
WT on P(T ) induced by the Markov transition rates on T given by

R(Ak, Ak′) := Rkk′ :=
1

πkdkk′
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0 = r0 r1 r2 rK−1 rK = 1

z0 z1 zK−2 zK−1

π0 π1 πK−1

Figure 1. The mesh T on S1.

if |k − k′| = 1, and Rkk′ = 0 otherwise. Then we have the detailed balance condition
πkRkk′ = πk′Rk′k. The rates are chosen to ensure that solutions to the discrete diffusion
equation (i.e., the Kolmogorov forward equation associated to the Markov chain given
by R) converge to solutions of the diffusion equation ∂tµ = ∂2

xµ in the limit of vanishing
mesh size [EGH00]. A gradient flow approach in one dimension can be found in [DL15].

The periodic setting. For any mesh T as above and N ≥ 1 one can construct a
periodic mesh TN with NK cells An;k by concatenating N rescaled copies of T .

0 1

1
N

π0
N

π1
N

πK−1

N

Figure 2. The mesh TN on S1.

We then consider the transport metric WN := WTN on P(TN) as defined above.
Explicitly, we have

W2
N(m0,m1) = inf

m,J

 1

N

∫ 1

0

N−1∑
n=0

K−1∑
k=0

dk,k+1
J2
t (n; k, k + 1)

θk,k+1

(
Nmt(n;k)

πk
, Nmt(n;k+1)

πk+1

) dt

 ,

where the infimum runs over all curves m : [0, 1] → P(TN) and J : [0, 1] → V (TN)
satisfying the discrete continuity equation

d

dt
mt(n; k) + Jt(n; k, k + 1)− Jt(n; k − 1, k) = 0

for all n = 0, . . . , N − 1 and k = 0, . . . , K − 1. Here we use the shorthand notation
m(n; k) = m(An;k) and J(n; k, k + 1) = J(An;k, An;k+1). The main goal of this paper is
to analyse the limiting behaviour of WN as N →∞.

The discrete-to-continuous limit. The first convergence result for discrete dynamical
transport metrics (in the sense of Gromov–Hausdorff) was obtained in [GM13]. There
it is shown that the discrete transport metric associated to the cubic mesh on the d-
dimensional torus converges to W2 in the limit of vanishing mesh size.

The limiting behaviour of discrete dynamical transport metrics on more general meshes
turns out to be a delicate issue. In fact, it follows from the multi-dimensional results
in [GKM18] that the discrete transport metrics WN converge to W2 if and only if the
means θkk′ are carefully chosen to satisfy an appropriate “balance condition” that reflects
the geometry of the mesh T . In our one-dimensional periodic setting, these results imply
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that WN converges to W2 if and only if there exist constants λk,k+1, s ∈ (0, 1) such that
the following conditions hold for k = 0, . . . , K − 1:

rk+1 = λk,k+1zk+1 + (1− λk,k+1)zk + s ,

θk,k+1(a, b) ≤ λk,k+1a + (1− λk,k+1)b for any a, b ≥ 0 .
(1.3)

Thus, to fulfill this condition, the asymmetry of the means θk,k+1 should reflect the
relative location of the points zk, rk+1, and zk+1. We refer to Section 4 below for a full
discussion.

The main contribution of the current paper is the identification of the limiting be-
haviour of WN in the general one-dimensional periodic setting, without assuming (1.3).
To state the result, we introduce the canonical projection operator PT : P(S1)→P(T )
defined by

(PT µ)({A}) = µ(A) (1.4)

for µ ∈P(S1) and A ∈ T . For brevity we write PN := PTN .
The following result asserts that WN converges to a Kantorovich metric with an ef-

fective mobility determined by the geometry of the mesh and by the choice of the means
θk,k+1.

Theorem 1.1 (Main result). Fix a mesh T on S1, and consider the induced periodic
meshes TN for N ≥ 1. For any µ0, µ1 ∈P(S1), we have

lim
N→∞

WN(PNµ0, PNµ1) =
√
c?(θ, T )W2(µ0, µ1) ,

where

c?(θ, T ) := inf

{
K−1∑
k=0

dk,k+1

θk,k+1

(
mk
πk
, mk+1

πk+1

) : m ∈P(T )

}
. (1.5)

Moreover, as N →∞ we have Gromov–Hausdorff convergence of metric spaces:

(P(TN),WN)→
(
P(S1),

√
c?(θ, T )W2

)
.

Remark 1.2 (Isotropic case). If the compatibility conditions (1.3) are satisfied, it follows
that c?(θ, T ) = 1, and we recover the result of [GKM18]; cf. Section 4.

Remark 1.3 (Convergence of gradient flows). We stress that the limiting behaviour at the
level of the transport metrics is in stark contrast with the convergence results of the level
of the gradient flow equation. Indeed, consider the discrete transport metric WN in the
case where each θk,k+1 is equal to the logarithmic mean θlog(a, b) =

∫ 1

0
a1−sbs ds. Then the

discrete diffusion equation is the gradient flow equation in (P(TN),WN) for the relative
entropy with respect to the natural reference measure πN ; cf. [CHLZ12, Maa11, Mie11].
Similarly, the continuous diffusion equation is the gradient flow in (P(S1),W2) for the
relative entropy with respect to the Lebesgue measure on S1 [JKO98]. Nevertheless, our
main result shows that the discrete transport metrics WN converge to a limiting metric
that is different from W2, unless the mesh is equidistant. For a systematic study of
convergence of gradient flow structures we refer to [Mie16b, Mie16a, DFM18].

Remark 1.4 (Convergence on geometric graphs). A convergence result for discrete trans-
port distances on a large class of geometric graphs associated to point clouds on the
d-dimensional torus has been obtained in [GT17]. This result applies in particular to iid
points sampled from the uniform distribution on the torus. As the results in that paper
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apply to sequences of graphs with increasing degree, they do not overlap with the results
obtained here.

Heuristics. We briefly sketch a non-rigorous argument that makes Theorem 1.1 plausi-
ble. For this purpose we consider a smooth solution to the continuity equation ∂tµ+∂xj =
0, and fix α ∈ T . Suppressing the time variable, we define a discrete measure m that
assigns mass m(k) := α(k)µ

(
[ n
N
, n+1
N

)
)
to each cell An;k in TN . This ensures that each

interval of the form [ n
N
, n+1
N

) receives the same mass at the discrete and the continuous
level, but within each such interval, the measure α introduces discrete density oscilla-
tions.

Let J be the discrete momentum vector field that solves the continuity equation for
m. If this vector field is sufficiently regular, we may estimate the discrete energy by

N−1∑
n=0

K−1∑
k=0

dk,k+1
J2
t (n; k, k + 1)

θk,k+1

(
Nmt(n;k)

πk
, Nmt(n;k+1)

πk+1

)
≈ 1

N

N−1∑
n=0

J2
t (n; 0, 1)

µ
(
[ n
N
, n+1
N

)
) K−1∑
k=0

dk,k+1

θk,k+1

(
α(k)
πk
, α(k+1)
πk+1

) ≈ c?(θ, T )

∫
|j|2

µ
,

after minimisation over α ∈P(T ). We thus recover the continuous energy appearing in
the Benamou–Brenier formula up to a multiplicative correction, which indeed suggests
our main result.

A rigorous argument based on this heuristics clearly requires suitable spatial regularity
results for m and J . Indeed, we will show in Section 5 below that any discrete curve can
be approximated by a curve of similar energy, which enjoys good Lipschitz bounds for J
as well as good Lipschitz bounds for m “up to oscillations within each cell”.

Organisation of the paper. In Section 2 we collect the basic definitions and prelimi-
nary results that are used in this paper. In Section 3 we give a simple approach to some
of the main convergence results, which only applies in the special case where T consists
of exactly 2 cells. In Section 3 we analyse the formula (1.5) for the effective mobility
c?(θ, T ) and discuss its relation to the geometric conditions from [GKM18].

The bulk of the proof of the main result is contained in Sections 5 and 6, which deal
with the lower and upper bounds for WN respectively. The key results in these sections
are Theorems 5.4 and 6.6. In Section 7 we finish the proof of the main result by proving
the Gromov–Hausdorff convergence.

2. Preliminaries

2.1. Continuous optimal transport on S1. For µ0, µ1 ∈ P(S1), let CE(µ0, µ1) de-
note the set of all distributional solutions to the continuity equation

∂tµ+ ∂xj = 0 (2.1)

with boundary conditions µt|t=0 = µ0 and µt|t=1 = µ1. This means that (µt)t and (jt)t are
Borel families of measures in P(S1) and M (S1) respectively, such that

∫ 1

0
|jt|(S1) dt <

∞, and (2.1) holds in the sense that∫ 1

0

∫
S1
∂tξ(t, x) dµt(x) dt+

∫ 1

0

∫
S1
∂xξ(t, x) djt(x) dt = 0 ,
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for any test function ξ ∈ C1
c (S1 × (0, 1)). For µ ∈P(S1) and j ∈M (S1) we set

A(µ, j) =

∫
S1

∣∣∣∣ djdµ

∣∣∣∣2 dµ ,

if j � µ, and A(µ, j) = +∞ otherwise. With this notation, the Benamou–Brenier
formula [BB00] asserts that

W2
2(µ0, µ1) = inf

{∫ 1

0

A(µt, jt) dt : (µt, jt)t ∈ CE(µ0, µ1)

}
, (2.2)

see, e.g., [AGS08, Lemma 8.1.3] for more details.

2.2. Discrete optimal transport on one-dimensional meshes. As in Section 1, we
fix a mesh T = {Ak}K−1

k=0 on S1, and use the notation rk, πk, zk, dkk′ . The set V (T )
of discrete vector fields is naturally identified with the set of real-valued functions on
{(k, k + 1)}K−1

k=0 .

0 = r0 r1 r2 rK−1 rK = 1

z0 z1 zK−2 zK−1

d01 dK−2,K−1

π0 π1 πK−1

Figure 3. The mesh T on S1.

Definition 2.1 (Discrete continuity equation). A pair (mt, Jt)t∈[0,1] is said to satisfy the
discrete continuity equation if

(i) m : [0, 1]→P(T ) is continuous;
(ii) J : [0, 1]→ V (T ) is locally integrable;
(iii) the continuity equation holds in the sense of distributions:

d

dt
mt(k) + Jt(k, k + 1)− Jt(k − 1, k) = 0 for all k = 0, . . . , K − 1 . (2.3)

We write CET (m0,m1) to denote the collection of pairs (mt, Jt)t∈[0,1] satisfying m|t=0 =
m0 and m|t=1 = m1.

Definition 2.2 (Admissible mean). An admissible mean is a function θ : R+×R+ → R+

that is concave, 1-homogeneous, and satisfies θ(1, 1) = 1.

Note that we do not impose that admissible means are symmetric.

Definition 2.3 (Discrete dynamical transport distance). Let T be a mesh on S1, and
{θk,k+1}K−1

k=0 be a family of admissible means.
(1) The energy functional AT : P(T )× V (T )→ R ∪ {+∞} is given by

AT (m, J) =
K−1∑
k=0

dk,k+1fk,k+1

(
m(k)

πk
,
m(k + 1)

πk+1

, J(k, k + 1)

)
,
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where fk,k+1(ρ, ρ̃, J) = F
(
θk,k+1(ρ, ρ̃), J

)
, and

F (ρ, J) =


J2

ρ
if ρ > 0 ,

0 if ρ = 0 and J = 0 ,
+∞ otherwise .

(2) The discrete dynamical transportation distance between m0,m1 ∈P(T ) is given
by

WT (m0,m1) = inf

{√∫ 1

0

AT (mt, Jt) dt : (mt, Jt)t ∈ CET (m0,m1)

}
.

In the sequel we apply these definitions to the periodic meshes TN defined in Section
1. We will then simply write AN andWN as a shorthand for ATN andWTN respectively.

2.3. A priori bounds. In this section we collect some coarse bounds that will be useful
in the sequel. To compare discrete and continuous measures, we consider the canonical
embedding ιT : P(T )→P(S1) defined by

ιTm =
K−1∑
k=0

mkUAk for m ∈P(T ) ,

where UAk denotes the uniform probability measure on Ak. Note that ιT is the right-
inverse of the projection map PT defined by (1.4). We will often write ιN = ιTN for
brevity.

The following notion of mesh regularity can be found in a multi-dimensional setting
in [EGH00, Section 3.1.2].

Definition 2.4 (ζ-regularity). Let ζ ∈ (0, 1]. We say that a mesh T is ζ-regular, if
ζ < mink{zk−rk,rk+1−zk}

maxk πk
for all k = 0, . . . , K − 1.

A mesh T is ζ-regular if and only if the ball of radius ζ maxk πk around zk is contained
in the interior of the cell Ak for each k. Clearly, any mesh T on S1 is ζ-regular for some
ζ ∈ (0, 1].

Remark 2.5. If T is ζ-regular for some ζ ∈ (0, 1], then each TN is ζ-regular as well.

Let [T ] denote the size of the mesh, i.e., the maximal diameter of its cells:

[T ] := max{πk : k = 0, . . . , K − 1} .
The following result provide a coarse upper bound for WN in terms of W2.

Proposition 2.6 (Coarse upper bound for WT ). Let ζ ∈ (0, 1]. There exists a constant
C <∞ depending only on ζ such that for any ζ-regular mesh T of S1 and all m0,m1 ∈
P(T ) we have

WT (m0,m1) ≤ C
(
W2(ιTm0, ιTm1) + [T ]

)
. (2.4)

Proof. This result has been proved in [GKM18, Lemma 3.3] for convex domains in Rd;
the proof on S1 proceeds mutatis mutandi. �

The following result provides a coarse bound in the opposite direction.
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Proposition 2.7 (Coarse lower bound forWT ). Fix δ, ζ ∈ (0, 1). There exists a constant
C < ∞ depending only on δ and ζ, such that for any ζ-regular mesh T on S1, and for
any solution (mt, Jt)t to the discrete continuity equation (2.3) satisfying δ ≤ mt(k)

πk
≤ δ−1

for all t ∈ [0, 1] and k = 0, . . . K − 1, we have

W2
2(ιTm0, ιTm1) ≤ C

∫ 1

0

AT (mt, Jt) dt . (2.5)

Proof. We define

µt = ιTmt , jt(x) =
rk+1 − x

πk
Jt(k − 1, k) +

x− rk
πk

Jt(k, k + 1) ,

for x ∈ Ak. It follows that (µt, jt) solves the continuous continuity equation. Moreover,

A(µt, jt) =
K−1∑
k=0

πk
mt(k)

∫ rk+1

rk

(
rk+1 − x

πk
Jt(k − 1, k) +

x− rk
πk

Jt(k, k + 1)

)2

dx

≤ 1

2

K−1∑
k=0

π2
k

mt(k)

(
J2
t (k − 1, k) + J2

t (k, k + 1)

)

=
1

2

K−1∑
k=0

J2
t (k, k + 1)

(
π2
k

mt(k)
+

π2
k+1

mt(k + 1)

)
.

Write ρt(k) = mt(k)
πk

. In view of the bounds on mt(k), we have

θk,k+1(ρt(k), ρt(k + 1)) ≤ max{ρt(k), ρt(k + 1)}

≤ δ−2 min{ρt(k), ρt(k + 1)} ≤ 2δ−2

(
1

ρt(k)
+

1

ρt(k + 1)

)−1

.

Since 2ζ[T ] ≤ dk,k+1, we have

π2
k

mt(k)
+

π2
k+1

mt(k + 1)
≤ [T ]

(
πk

mt(k)
+

πk+1

mt(k + 1)

)
≤ 1

ζδ2

dk,k+1

θk,k+1(ρt(k), ρt(k + 1))
.

It follows that

A(µt, jt) ≤
1

2ζδ2

K−1∑
k=0

dk,k+1
J2
t (k, k + 1)

θk,k+1(ρt(k), ρt(k + 1))
=

1

2ζδ2
AT (mt, Jt) ,

which implies the result with C = 1
2ζδ2

. �

3. A simple proof of the lower bound in the 2-periodic case

In this section we focus on the simplest non-trivial periodic setting, which corresponds
to taking K = 2 in Figure 1. In this setting we present a short proof of the lower bound
in Theorem 1.1 by connecting the problem to known results from [GM13, GKM18]. This
approach does not appear to generalise to K ≥ 3.

We fix a parameter r ∈ (0, 1), and consider the mesh T with K = 2, and r0 = 0,
r1 = r, and r2 = 1. The points z0 = r

2
and z1 = r+1

2
are chosen to be the midpoints of

the cells, so that d01 = d12 = 1
2
.
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0
r
N

1
N

1+r
N

2
N 1

Figure 4. A 2-periodic mesh TN on S1.

Throughout this section we make the standing assumption that θ01 = θ21, and we
simply write θ := θ01. This implies that the constant c?(θ, r) := c?(θ, T ) is given by

c?(θ, r) = inf
α∈[0,1]

1

θ
(
α
r
, 1−α

1−r

) . (3.1)

The notation m(k) = m(Ak) allows us to canonically identify measures on TN with
measures on the equidistant mesh corresponding to r = 1

2
. We write Tr,N to emphasise

the dependence of TN on r, and write Aθr,N andWθ
r,N to denote the corresponding energy

and metric. The cells in Tr,N will be labeled 0, . . . , 2N − 1.

3.1. Lower bound. The following lemma compares the discrete transport metric on
the mesh Tr,N with the corresponding quantity on the equidistant mesh T 1

2
,N .

Lemma 3.1. Let r ∈ (0, 1) and N ≥ 1. For any m0,m1 ∈P(Tr,N) we have

Wθ
r,N(m0,m1) ≥

√
c?(θ, r)Wθa

1
2
,N

(m0,m1) (3.2)

where θa denotes the arithmetic mean.

Proof. Note that

Aθr,N(m, J) =
1

2N2

N−1∑
n=0

{
(J(2n, 2n+ 1))2

θ
(m(2n)

r
, m(2n+1)

1−r

) +
(J(2n− 1, 2n))2

θ
(m(2n)

r
, m(2n−1)

1−r

)} .

The key observation is that the mean θ of the densities m(2n)
r

and m(2n±1)
1−r on the mesh

Tr,N can be estimated in terms of the arithmetic mean θa of the corresponding densities
m(2n)

1/2
and m(2n±1)

1/2
on the symmetric mesh T 1

2
,N . Indeed, as we can write

m(2n) = α±n
(
m(2n) +m(2n± 1)

)
and m(2n± 1) = (1− α±n )

(
m(2n) +m(2n± 1)

)
for some α±n ∈ [0, 1], the 1-homogeneity of θ yields

θ

(
m(2n)

r
,
m(2n± 1)

1− r

)
=
(
m(2n) +m(2n± 1)

)
θ

(
α±n
r
,
1− α±n
1− r

)
≤ θa

(
m(2n)

1/2
,
m(2n± 1)

1/2

)
1

c?(θ, r)
.

Consequently,

Aθr,N(m, J) ≥ c?(θ, r)Aθa1
2
,N

(m, J) .

As the continuity equation does not depend on r, this implies the result. �

The sought lower bound for Wθ
r,N can now be easily obtained.

Corollary 3.2. Fix r ∈ (0, 1). For any µ0, µ1 ∈P(S1), we have

lim inf
N→∞

Wr,N(PNµ0, PNµ1) ≥
√
c?(θ, r)W2(µ0, µ1) .
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Proof. This follows by applying Lemma 3.1 to the measures mi := PNµi and using the
known convergence result for symmetric meshes [GM13, GKM18], which asserts that

lim
N→∞

Wθa
1
2
,N

(PNµ0, PNµ1) = W2(µ0, µ1) .

�

For proving the corresponding upper bound

lim sup
N→∞

Wr,N(PNµ0, PNµ1) ≤
√
c?(θ, r)W2(µ0, µ1) ,

the 2-periodic setting does not appear to offer conceptual simplifications compared to
the general K-periodic setting. Therefore, we will directly treat the K-periodic setting
in Section 6.

3.2. Examples. We finish this section by explicitly computing the value of c?(θ, r) in a
number of cases. We write

fθ,r(α) := θ

(
α

r
,
1− α
1− r

)
, so that c?(θ, r) = inf

α∈(0,1)

1

fθ,r(α)
.

Example 3.3 (θ is r-balanced). Suppose that θ(a, b) ≤ ra+(1−r)b for any a, b ≥ 0 (i.e., θ
is r-balanced in the sense of Definition 4.6 below). Applying this inequality to a = α

r
and

b = 1−α
1−r we immediately obtain fθ,r(α) ≤ 1 for all α ∈ [0, 1]. Since fθ,r(r) = θ(1, 1) = 1

by assumption, it follows that

c?(θ, r) =
1

fθ,r(r)
= 1 .

Example 3.4 (Geometric mean). Let θ(a, b) =
√
ab. Then fθ,r(α) =

√
α(1−α)
r(1−r) is uniquely

maximised at α = 1
2
, and we obtain

c?(θ, r) = 2
√
r(1− r) .

Note that the fact that α? = 1
2
means that the mass is equally distributed among large

and small cells, irrespectively of the value of r. Thus, there will be no oscillations for
the optimal discrete measures; however, this means that oscillations at the level of the
density do occur.

Example 3.5 (Harmonic mean). Let θ(a, b) = 2ab
a+b

. In this case we have g(α) := 1
fθ,r(α)

=

1
2

(
1−r
1−α + r

α

)
, and g′(α) = 1−r

2(1−α)2
− r

2α2 . It follows that g′ vanishes at α? =
√
r√

r+
√

1−r ,
which is indeed the unique minimiser of g. Consequently,

c?(θ, r) = g(α?) =
1

2

(√
r +
√

1− r
)2
.

Example 3.6 (Arithmetic mean). Let θ(a, b) = a+b
2
. Then fθ,r(α) = 1

2

(
1−α
1−r + α

r

)
is affine

in α. If r < 1
2
(resp. r > 1

2
), the maximum is attained at α? = 1 (resp. α? = 0). In both

cases, this means that all the mass will be assigned to the small cells. It follows that

c?(θ, r) = 2 min{r, 1− r} .
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Example 3.7 (Minimum). Let θ(a, b) = min{a, b}. In this case, fθ,r(α) = min{1−α
1−r ,

α
r
}

is uniquely maximised at α? = r. This means that the assigned mass is proportional to
the size of the cells, hence there are no oscillations at the level at the density. We find

c?(θ, r) =
1

fθ,r(α?)
= 1 .

4. Analysis of the effective mobility

In this section we investigate some basic properties of the effective mobility c?(θ, T )
defined in (1.5), and relate its value to certain geometric properties of the mesh T that
have been considered in [GKM18]. Recall:

c?(θ, T ) := inf


K−1∑
k=0

dk,k+1

θk,k+1

(
mk
πk
, mk+1

πk+1

) : m ∈P(T )

 . (4.1)

We start with a simple observation.

Proposition 4.1. For any mesh T on S1 and any family of means θ = {θk,k+1}K−1
k=0 we

have c?(θ, T ) ≤ 1.

Proof. This follows by using the competitor mk = πk in (4.1). �

In view of this result, Theorem 1.1 implies the upper bound

lim sup
N→∞

WN(PNµ0, PNµ1) ≤W2(µ0, µ1) ,

which had already been proved in [GKM18] using different methods.

Proposition 4.2. The infimum in (4.1) is attained.

Proof. This follows by lower-semicontinuity and compactness. �

In the remainder of this section we shall investigate under which conditions on θ and
T we have c?(θ, T ) = 1. For this purpose, we consider two geometric conditions:

Definition 4.3 (Geometric conditions on the mesh). Fix {λk,k+1}K−1
k=0 ∈ [0, 1]K, and set

λk+1,k = 1− λk,k+1. We say that a mesh T = Tπ,z on S1 satisfies
(1) the center-of-mass condition with parameters {λk,k+1}K−1

k=0 if, for all k,

rk+1 = λk+1,kzk + λk,k+1zk+1 ; (4.2)

(2) the isotropy condition with parameters {λk,k+1}K−1
k=0 if, for all k,

πk = λk,k−1dk−1,k + λk,k+1dk,k+1 . (4.3)

Both of these conditions have been studied for meshes on bounded convex domains
in Rd in [GKM18]. The center-of-mass condition asserts that the center of mass of the
cell interfaces lie on the line segment connecting the support points of the respective
cells. In dimensions d ≥ 2, this condition poses a strong geometric condition on the
mesh. However, in our one-dimensional context, the condition is always satisfied, for a
unique choice of the parameters {λk,k+1}k. The isotropy condition is weaker than the
center-of-mass condition: it holds with the same parameters, but there is an additional
degree of freedom, as the following result shows.
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Proposition 4.4. Let T = Tπ,z be a mesh on S1 and set λk,k+1 = rk+1−zk
zk+1−zk

for k =

0, . . . , K − 1. For {λk,k+1} ⊆ [0, 1] the following assertions hold:
(1) The center-of-mass condition holds if and only if

λk,k+1 = λk,k+1 .

(2) The isotropy condition holds if and only if

λk,k+1 = λk,k+1 +
s

dk,k+1

for some s ∈ [−mink λk,k+1dk,k+1,mink λk+1,kdk,k+1].

Proof. This follows immediately by solving the corresponding linear systems. �

Remark 4.5 (Relation to the asymptotic isotropy condition). Recall from [GKM18, Def-
inition 1.3] that a family of meshes {T } (in any dimension) is said to satisfy the isotropy
condition with parameters {λKL} if, for any K ∈ T ,∑

L∈T

λKL
|K|L|
dKL

(zK − zL)⊗ (zK − zL) ≤ |K|
(
Id + ηT (K)

)
(4.4)

where sup
K∈T
|ηT (K)| → 0 as max{diam(A) : A ∈ T } → 0.

Applying this condition to the family of one-dimensional periodic meshes T N con-
structed from T , it reduces to

λk,k−1dk−1,k + λk,k+1dk,k+1 ≤ πk(1 + ηN(k))

for all N ≥ 1 and k = 0, . . . , K − 1, where ηN(k)→ 0 as N →∞. As the left-hand side
does not depend on N , this condition in turn simplifies to

λk,k−1dk−1,k + λk,k+1dk,k+1 ≤ πk (4.5)

for all k = 0, . . . , K − 1.
Clearly, (4.3) implies (4.5). To see that both assertions are equivalent, we note that

(4.5) can be written as

λk,k+1dk,k+1 − λk−1,kdk−1,k ≤ πk − dk−1,k . (4.6)

To obtain a contradition, suppose that we have strict inequality in (4.6) for some k = k̄.
Summation over k = 0, . . . , K − 1 yields

0 =
K−1∑
k=0

(
λk,k+1dk,k+1 − λk−1,kdk−1,k

)
<

K−1∑
k=0

(
πk − dk−1,k

)
= 0 ,

which is absurd.
In summary, we conclude that the isotropy condition (4.3) is equivalent to the asymp-

totic isotropy condition (4.4) for the family of meshes {T N}.

The next definition will be used to connect geometric properties of the mesh to prop-
erties of the means in the definition of the transport distance.

Definition 4.6 (Adaptedness). (1) Let λ ∈ [0, 1]. A mean θ is said to be λ-balanced
if θ(a, b) ≤ λa+ (1− λ)b for any a, b ≥ 0.

(2) A family of means {θk,k+1} is said to be adapted to the parameters {λk,k+1} if
θk,k+1 is λk,k+1-balanced for each k.
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Remark 4.7. Each continuously differentiable mean θ is λ-balanced for exactly one value
of λ ∈ [0, 1], namely

λ = ∂1θ(1, 1) . (4.7)

A non-smooth mean θ can be λ-balanced for multiple values of λ, e.g., the mean (a, b) 7→
min{a, b} is λ-balanced for any λ ∈ [0, 1].

Now we are ready to state the main result of this section. The result is consistent
with the main result in [GKM18], which asserts that the asymptotic isotropy condition
is necessary (and essentially sufficient) for Gromov–Hausdorff convergence of the discrete
transport distance to W2.

Theorem 4.8 (Isotropy is equivalent to c?(θ, T ) = 1). Let {θk,k+1} be a family of means
that are adapted to {λk,k+1}.

(1) If T satisfies the isotropy condition with parameters {λk,k+1}, then c?(θ, T ) = 1.
(2) Assume that each mean θk,k+1 is continuously differentiable. If c?(θ, T ) = 1, then
T satisfies the isotropy condition with parameters {λk,k+1}.

Remark 4.9 (Minimum mean). In view of Proposition 4.4, every mesh T satisfies the
isotropy condition for suitable choice of {λk}. Since the minimum mean (a, b) 7→
min{a, b} is λ-balanced for any value of λ ∈ [0, 1], it thus follows from Theorem 4.8
that c?(θ, T ) = 1 if θk,k+1 = min for each k.

Proof. To prove (1), take any sequence {mk}k with
∑K−1

k=0 mk = 1. Using Jensen’s
inequality, the adaptedness, the periodicity, and the isotropy condition, we obtain

K−1∑
k=0

dk,k+1

θk,k+1

(
mk
πk
, mk+1

πk+1

) ≥ (K−1∑
k=0

dk,k+1θk,k+1

(
mk

πk
,
mk+1

πk+1

))−1

≥

(
K−1∑
k=0

dk,k+1

(
λk,k+1

mk

πk
+ λk+1,k

mk+1

πk+1

))−1

=

(
K−1∑
k=0

mk

πk

(
λk,k+1dk,k+1 + λk,k−1dk−1,k

))−1

=

(
K−1∑
k=0

mk

)−1

= 1 .

Taking the infimum over {mk}k, we obtain c?(θ, T ) ≥ 1. In view of Proposition 4.1 we
infer that c?(θ, T ) = 1.

To prove (2), we consider the probability measures γkα defined by

γkα = (π0, . . . , πk−1, πk + α, πk+1 − α, πk+2, . . . , πK−1)

for |α| sufficiently small. Let us write

hθ,T (m) =
K−1∑
k=0

dk,k+1

θk,k+1

(
mk
πk
, mk+1

πk+1

) .
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As c?(θ, T ) = 1, we have hθ,T (m) ≥ 1 for all m. Thus, since hθ,T (γk0 ) = hθ,T (π) = 1, it
follows that d

dα

∣∣
α=0

hθ,T (γkα) = 0. A direct computation shows that

d

dα

∣∣∣∣
α=0

hθ,T (γkα) = Ak+1 − Ak where Ak :=
λk,k−1dk−1,k + λk,k+1dk,k+1

πk
.

As this holds for every k, we infer that there exists a constant β > 0 such that Ak = β
for every k = 0, . . . , K − 1. The latter means that

βπk = λk,k−1dk−1,k + λk,k+1dk,k+1

for all k = 0, . . . , K − 1. Summation over k yields

β = β

K−1∑
k=0

πk =
K−1∑
k=0

(1− λk−1,k)dk−1,k + λk,k+1dk,k+1 =
K−1∑
k=0

dk−1,k = 1 ,

which proves the isotropy condition with parameters {λk,k+1}k. �

5. Proof of the lower bound

The goal of this section is to prove Theorem 5.4, which yields the lower bound in
Theorem 1.1. The crucial ingredient is Proposition 5.3, which ensures the existence of
approximately optimal curves with good regularity properties.

To formulate this result, we fix a non-negative function η ∈ C∞c (0, 1
2
) with

∫ 1

0
η(x) dx =

1. We set ηλ(x) = 1
λ
η(x

λ
) for x ∈ [0, 1), and consider its periodic extension to S1. For

λ ∈ (0, 1] we define a discrete spatial mollifier by

ηNλ (n) :=
N

λ

∫ n+1
N

n
N

η
(x
λ

)
dx , n = 0, . . . , N − 1 ,

and we extend ηNλ to Z periodically modulo N , so that it can be regarded as a function
on the discrete torus TN = Z/NZ. It follows that 1

N

∑N−1
n=0 η

N
λ (n) = 1, and the following

kernel bounds hold for n = 0, . . . , N − 1:

|ηNλ (n)| ≤ ‖η‖∞
λ

, |ηNλ (n1)− ηNλ (n2)| ≤ ‖η
′‖∞
λ2

|n1 − n2|
N

, (5.1)

We consider the convolution operators Mλ : L1(S1)→ L∞(S1) given by(
Mλf

)
(x) =

∫
S1
ηλ(x− y)f(y) dy ,

as well as the analogous discrete convolution operatorsMN
λ : L1(TN)→ L∞(TN) defined

by (
MN

λ ψ
)
(n) =

1

N

N−1∑
j=0

ηNλ (n− j)ψ(j) .

The kernel bounds (5.1) imply the following L1-L∞ and L1-Lipschitz bounds:

sup
n
|MN

λ ψ(n)| ≤ ‖η‖∞
λN

N−1∑
n=0

|ψ(n)| , (5.2)

sup
n
|MN

λ ψ(n1)−MN
λ ψ(n2)| ≤ ‖η

′‖∞
λ2

|n1 − n2|
N2

N−1∑
n=0

|ψ(n)| . (5.3)
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The following result collect some basic properties for convolution operators that will
be used in the sequel.

Lemma 5.1 (Bounds for convolution operators). Let λ ∈ (0, 1] and N ≥ 2. For any
µ ∈P(S1) and m ∈P(TN) we have

W2(µ,Mλµ) ≤ Cλ , (5.4)

W2(ιNMN
λ m,MλιNm) ≤ λ

2
+

2

N
, (5.5)

where C <∞ depends only on η.

Proof. The inequality (5.4) follows straightforwardly using the coupling γ(dx, dy) =
ηλ(y − x) dµ(x) dy.

To prove (5.5), we note that

W2
2(ιNMN

λ m,MλιNm) ≤
N−1∑
i=0

miW2
2(ιNMN

λ δi,MλιNδi)

by convexity of W2
2. Thus it suffices to prove the lemma for m = δi. Since d

(
ιNδi

)
(x) =

N1[ i
N
, i+1
N

](x) dx, we have

d
(
MλιNδi

)
(x) = N

(
ηλ ∗ 1[ iN ,

i+1
N ]

)
(x) dx . (5.6)

On the other hand, we have

d
(
ιNMN

λ δi
)
(x) =

N−1∑
n=0

ηNλ (n− i)1[ nN ,
n+1
N ](x) dx .

Since supp ηλ ⊂
(
0, λ

2

)
, we obtain

suppMλιNδi ⊆
[
i
N
, i+1
N

+ λ
2

]
and supp ιNMN

λ δi ⊆
[
i−1
N
, i+1
N

+ λ
2

]
,

hence

diam
(

supp(ιNMN
λ δi) ∪ supp(MλιNδi)

)
≤ λ

2
+

2

N
.

This easily yields the desired result. �

Before stating the crucial regularisation result, we formulate a lemma which asserts
that we can decrease the energy at the discrete level by a suitable regularisation. Here it
is crucial that the regularisation is performed by averaging the density at spatial locations
nK + k and n′K + k that differ by a multiple of the period K. A “naive” regularisation
consisting of locally averaging the density, without taking the periodic structure into
account, would in general not decrease the energy. We emphasise that the operatorMN

λ

is understood to act on the variable n in the result below.

Lemma 5.2 (Energy bound under periodic smoothing). Let λ ∈ (0, 1]. For any m ∈
P(TN) and any J ∈ V (TN) we have

AN(MN
λ m,MN

λ J) ≤ AN(m, J) .
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Proof. For brevity we write

Fk,k+1(m, J, n) =
dk,k+1

N
fk,k+1

(
N
m(n; k)

πk
, N

m(n; k + 1)

πk+1

, J(n; k, k + 1)

)
.

Applying Jensen’s inequality to the jointly convex functions fk,k+1 we obtain

AN(MN
λ m,MN

λ J) =
K−1∑
k=0

N−1∑
n=0

Fk,k+1(MN
λ m,MN

λ J, n)

≤
K−1∑
k=0

N−1∑
n=0

1

N

N−1∑
`=0

ηNλ (n− `)Fk,k+1(m, J, `)

=
K−1∑
k=0

N−1∑
`=0

(
1

N

N−1∑
n=0

ηNλ (n− `)

)
Fk,k+1(m, J, `)

=
K−1∑
k=0

N−1∑
`=0

Fk,k+1(m, J, `)

= AN(m, J) ,

where we used that 1
N

∑N−1
n=0 η

N
λ (n) = 1. �

We are now ready to state the main regularisation result of this section. As we
expect that (approximately) optimal densities exhibit oscillations, we cannot expect
spatial regularity for such densities. Nevertheless, the lemma above allows us to obtain
a restricted form of regularity for such densities, in the sense that good Lipschitz bounds
hold if one only compares values of the density at spatial locations nK + k and n′K + k
that differ by a multiple of the period K.

Note that the vector field J enjoys better regularity properties: in (5.8e) we even
obtain a Lipschitz bound for neighbouring cells.

Proposition 5.3 (Space-time regularisation). Fix N ≥ 1, and let (mt, Jt)t be a solution
to the discrete continuity equation (2.3) in P(TN) satisfying

A :=

∫ 1

0

AN(mt, Jt) dt <∞ .

Then, for any ε > 0 there exists a solution (m̃t, J̃t)t to (2.3) such that:

(1) W2(ιNm̃t, ιNmt) ≤ ε+ C
N

for all t ∈ [0, 1], where C <∞ depends only on T ;
(2) the following action bound holds:

∫ 1

0

AN(m̃t, J̃t) dt ≤
∫ 1

0

AN(mt, Jt) dt ; (5.7)
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(3) the following regularity properties hold, for some constants c0, . . . , c5 < ∞ de-
pending on ε and A, but not on N :

c−1
0 ≤ min

n,k
Nm̃t(n; k) ≤ max

n,k
Nm̃t(n; k) ≤ c1 , (5.8a)

sup
t∈[0,1]

max
n,k

∣∣N∂tm̃N
t (n; k)

∣∣ ≤ c2 , (5.8b)

sup
t∈[0,1]

max
n,k

∣∣Nm̃t(n; k)−Nm̃t(n+ 1; k)
∣∣ ≤ c3

N
, (5.8c)

sup
t∈[0,1]

max
n,k

∣∣J̃Nt (n; k, k + 1)
∣∣ ≤ c4 , (5.8d)

sup
t∈[0,1]

max
n,k

∣∣J̃t(n; k, k + 1)− J̃t(n; k − 1, k)
∣∣ ≤ c5

N
. (5.8e)

Proof. Let UN := PNL 1|S1 ∈P(TN) denote the probability measure that assigns mass
πk
N

to An;k. Fix a mollifier η as above. For λ, τ, δ > 0 we define a space-time regularisation
by

m̃t(n; k) :=
1

2τ

∫ t+τ

t−τ
MN

λ

[
(1− δ)mu + δUN

]
(n; k) du , (5.9a)

J̃t(n; k, k + 1) :=
1− δ

2τ

∫ t+τ

t−τ
MN

λ Ju(n; k, k + 1) du . (5.9b)

In both expressions, the operator MN
λ is understood to act on the variable n, i.e., the

spatial averaging takes place over cells whose distance is an integer multiple of the period
K. Moreover, we use the convention that mu = m0 and Ju = 0 for u < 0, and mu = m1

and Ju = 0 for u > 1. We claim that this approximation satisfies all the sought properties.
An explicit computation shows that (m̃t, Ṽt)t solves the discrete continuity equation.
To prove (5.7), we note that by a trifold application of the joint convexity of AN ,

AN(m̃t, J̃t) ≤
1

2τ

∫ t+τ

t−τ
AN
(
MN

λ

[
(1− δ)mu + δUN

]
, (1− δ)MN

λ Ju

)
du

≤ 1

2τ

∫ t+τ

t−τ
AN
([

(1− δ)mu + δUN
]
, (1− δ)Ju

)
du

≤ 1− δ
2τ

∫ t+τ

t−τ
AN(mu, Ju) du .

Here we used the crucial regularisation bound from Lemma 5.2. The desired inequality
(5.7) follows.

Moreover, sinceMN
λ preserves positivity, we deduce (5.8a) with c−1

0 = δmink πk.
To prove (5.8b), we observe that

∂tm̃t =
1− δ

2τ
MN

λ

[
mt+τ −mt−τ

]
.

Therefore, since mt is a probability measure, the L1-L∞-bound in (5.2) yields

N |∂tm̃t(n)| ≤ ‖η‖∞
τλ

=: c2

which proves (5.8b).



18 PETER GLADBACH, EVA KOPFER, JAN MAAS, AND LORENZO PORTINALE

The inequality (5.8e), with c5 = c2, follows immediately from (5.8b) and the fact that
(m̃N

t , J̃t)t solves the continuity equation.
Furthermore, since

|m̃t(n; k)− m̃t(n+ 1; k)| ≤ sup
t
|MN

λ mt(n; k)−MN
λ mt(n+ 1; k)| ≤ ‖η

′‖∞
λ2N2

,

we obtain (5.8c) with c3 = ‖η′‖∞
λ2

, in view of the Lipschitz bound in (5.3).
To prove the upper bound on the density in (5.8a), we take advantage of the L1-L∞

bound (5.2) once more to obtain

Nm̃t(n; k) ≤ ‖η‖∞
λ

=: c1 .

Finally, to obtain the L∞-bound on the vector field (5.8d), we use (5.2) again to infer

sup
n,k
|J̃t(n; k, k + 1)| ≤ 1− δ

2τ

∫ t+τ

t−τ
sup
n,k
|MN

λ Ju(n; k, k + 1)| du

≤ ‖η‖∞
λN

1− δ
2τ

∫ t+τ

t−τ
sup
k

N−1∑
n=0

|Ju(n; k, k + 1)| du .

Writing θn;k,k+1 = θk,k+1

(
N mu(n;k)

πk
, N mu(n;k+1)

πk+1

)
for brevity, we infer that

1

N

(∑
n,k

|Ju(n; k, k + 1)|
)2

≤
(∑

n,k

dk,k+1

N

J2
u(n; k, k + 1)

θn;k,k+1

)(∑
n,k

θn;k,k+1

dk,k+1

)
= AN(mu, Ju)

∑
n,k

θn;k,k+1

dk,k+1

.

Using the bound θk,k+1(a, b) ≤ a+ b we obtain∑
n,k

θn;k,k+1

dk,k+1

≤ N

mink dk,k+1

∑
n,k

(
mu(n; k)

πk
+
mu(n; k + 1)

πk+1

)
≤ 2BN ,

where B = (maxk π
−1
k )(maxk d

−1
k,k+1). Combining these bounds, we arrive at

sup
n,k
|J̃t(n; k, k + 1)| ≤ ‖η‖∞

√
2B

2τλ

∫ t+τ

t−τ

√
AN(mu, Ju) du

≤ ‖η‖∞
λ

√
B

τ

∫ 1

0

AN(mu, Ju) du ,

which yields (5.8d) with c4 := ‖η‖∞
λ

√
AB
τ
. As we will choose δ, λ, τ > 0 depending on ε,

the bounds (5.8a)–(5.8e) follow.

It remains to show that W2(ιNm̃t, ιNmt) ≤ ε+ C
N

for suitable values of δ, λ and τ . We
consider the effect of the three different regularisations separately. First we apply the
convexity of W2

2 to obtain for any m ∈P(TN),

W2
2

(
ιNm, ιN [(1− δ)m+ δUN ]

)
≤ δW2

2(ιNm,L
1|S1) ≤

δ

4
, (5.10)
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since the diameter of (P(S1),W2) is equal to 1
2
. Moreover, for m ∈P(TN), Lemma 5.1

yields

W2(ιNm, ιNMN
λ m) ≤W2(ιNm,MλιNm) + W2(MλιNm, ιNMN

λ m)

≤ C

(
λ+

1

N

)
,

(5.11)

where C < ∞ depends only on η. Furthermore, set m̄t = MN
λ

(
(1 − δ)mt + δUN

)
and

J̄t = (1− δ)MN
λ Jt. It then follows that c0 ≤ Nm̄t ≤ c1 and

∫ 1

0
AN(m̄t, J̄t) dt ≤ A. Thus,

for s ≤ t, Proposition 2.7 yields a constant κ < ∞ depending on c0 and c1 (hence on δ
and λ) such that,

W2
2(ιNm̄s, ιNm̄t) ≤ κ

∫ 1

0

A(m̄(1−a)s+at, (t− s)J̄(1−a)s+at) da

≤ κ(t− s)
∫ t

s

A(m̄u, J̄u) du

≤ κA(t− s) .

By convexity of W2
2, we obtain

W2
2

(
ιNm̄t, ιN

[
1

2τ

∫ t+τ

t−τ
m̄u du

])
≤ 1

2τ

∫ t+τ

t−τ
W2

2(ιNm̄t, ιNm̄u) du ≤ κτA

2
. (5.12)

Applying the estimates (5.10) with m = mt, (5.11) with m = (1 − δ)mt + δUN and
(5.12), we arrive at

W2

(
ιNm̃t, ιNmt

)
≤ C

(√
δ + λ+

1

N
+
√
κτA

)
,

for some C <∞ depending only on T and on η. Thus, choosing first λ and δ sufficiently
small, and then τ sufficiently small depending on δ, the result follows. �

We are now ready to prove the lower bound in Theorem 1.1.

Theorem 5.4 (Lower bound for WN). For any mesh T and any family of admisible
means {θk,k+1}k we have

c?(θ, T )W2
2(µ0, µ1) ≤ lim inf

N→∞
W2

N(PNµ0, PNµ1) ,

uniformly for all µ0, µ1 ∈P(S1). More precisely, for any ε > 0 there exist C <∞ and
N̄ ∈ N such that for any N ≥ N̄ and µ0, µ1 ∈P(S1), we have

c?(θ, T )W2
2(µ0, µ1) ≤ W2

N(PNµ0, PNµ1) + ε+
C

N
. (5.13)

Proof. Fix ε > 0. Applying Proposition 5.3 to an approximate WN -geodesic between
PNµ0 and PNµ1, we infer that there exists a curve (mt, Jt)t satisfying the bounds

W2(ιNmi, ιNPNµi) ≤ ε+
C

N
for i = 0, 1 , (5.14)∫ 1

0

AN(mt, Jt) dt ≤ W2
N(PNµ0, PNµ1) + ε , (5.15)

as well as the regularity properties (5.8a)–(5.8e).
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For brevity we write

AN(m, J) =
1

N

N−1∑
n=0

AnN(m, J) ,

where

AnN(m, J) =
K−1∑
k=0

dk,k+1fk,k+1

(
N
m(n; k)

πk
, N

m(n; k + 1)

πk
, J(n; k, k + 1)

)
.

We set

m̂t(n) :=
K−1∑
k=0

mt(n; k) , Ĵt(n) := Jt(n;−1, 0) ,

and define αt : {0, . . . , N − 1} × {0, . . . , K} → R by

αt(n; k) =
mt(n;σ(k))

m̂t(n)
for k = 0, . . . , K ,

where σ(k) = k for k = 0, . . . , K − 1, and σ(K) = 0. Here it is important to note that
αt(n;K) 6= αt(n+ 1; 0). Observe that, for k = 0, . . . , K − 1,

1

θk,k+1

(αt(n;k)
πk

, αt(n;k+1)
πk+1

) |Ĵt(n)|2

Nm̂t(n)
= fk,k+1

(
N
mt(n;σ(k))

πk
, N

mt(n;σ(k + 1))

πk+1

, Ĵt(n)

)
.

Note that, for any n and k,

c−1
0

max` π`
≤ N

mt(n; k)

πk
≤ c1

min` π`
and |Jt(n; k, k + 1)| ≤ c4 .

Therefore, since the functions fk,k+1 are Lipschitz on the set [
c−1
0

max` π`
, c1

min` π`
]2 × [−c4, c4],

it follows that, for k = 0, . . . , K − 1,∣∣∣∣fk,k+1

(
N
mt(n; k)

πk
, N

mt(n; k + 1)

πk+1

, Jt(n; k, k + 1)

)
− 1

θk,k+1

(αt(n;k)
πk

, αt(n;k+1)
πk+1

) |Ĵt(n)|2

Nm̂t(n)

∣∣∣∣
≤ [fk,k+1]Lip

(
N

πk+1

∣∣mt(n; k + 1)−mt(n;σ(k + 1))
∣∣+
∣∣Jt(n; k, k + 1)− Ĵt(n)

∣∣)
≤ [fk,k+1]Lip

N

(
c3

πk+1

+Kc5

)
=:

C

N
,

(5.16)
for some C <∞ depending on ε (through c0, . . . , c5) and on T .

Since
∑K−1

k=0 αt(n; k) = 1, the sequence {αt(n; k)}K−1
k=0 is, for any n, a competitor for

the cell problem (1.5). Taking into account that αt(n; 0) = αt(n;K), it follows from
(5.16) and the definition (1.5) of c?(θ, T ) that

AnN(mt, Jt) ≥
|Ĵt(n)|2

Nm̂t(n)

K−1∑
k=0

dk,k+1

θk,k+1

(αt(n;k)
πk

, αt(n;k+1)
πk+1

) − C

N

≥ c?(θ, T )
|Ĵt(n)|2

Nm̂t(n)
− C

N
.

(5.17)
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At the continuous level, we define a curve of measures (µNt )t with piecewise constant
densities, and a vector field jNt by piecewise affine interpolation of ĴNt ; more precisely,

µNt =
N−1∑
n=0

m̂tUÂn ,

jNt (x) =
N−1∑
n=0

χÂn(x)
[
(n+ 1−Nx)Ĵt(n) + (Nx− n)Ĵt(n+ 1)

]
.

As before, UÂn denotes the normalised Lebesgue measure on Ân := [ n
N
, n+1
N

).
We observe that the density ρNt of µNt satisfies

∂tρ
N
t (x) = N

K−1∑
k=0

∂tm̂t(n; k) = N
(
Ĵt(n)− Ĵt(n+ 1)

)
= −∂xjNt (x)

for any x ∈
(
n
N
, n+1
N

)
, which implies that

(
µNt , j

N
t

)
t
solves the continuity equation.

To estimate the continuous energy, we find

A(µNt , j
N
t ) =

1

N

N−1∑
n=0

1

m̂t(n)

∫ n+1
N

n
N

[
(n+ 1−Nx)Ĵt(n) + (Nx− n)Ĵt(n+ 1)

]2

dx

≤ 1

N

N−1∑
n=0

Ĵt(n)2 + Ĵt(n+ 1)2

2Nm̂t(n)

=
1

N

N−1∑
n=0

Ĵt(n)2

θh(Nm̂t(n), Nm̂t(n+ 1))

where θh(a, b) = 2ab
a+b

denotes the harmonic mean. Note that (5.8c) implies the Lipschitz
bound

|Nm̂t(n)−Nm̂t(n− 1)| ≤ Kc3

N
.

and (5.8a) yields a lower bound on the density: Nm̂t(n) ≥ Kc−1
0 . Furthermore, (5.8d)

yields the estimate |Ĵt(n)| ≤ c4. Thus, in view of the identity 1
θh(a,b)

= 1
a

+ a−b
2ab

we obtain

A(µNt , j
N
t ) ≤

(
1

N

N−1∑
n=0

Ĵt(n)2

Nm̂t(n)

)
+
C

N
, (5.18)

with C <∞ depending on ε (through the ci’s) and on T .
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Putting things together, it follows from (5.17), (5.18) and (5.15) that

c?(θ, T )W2
2(µN0 , µ

N
1 ) ≤ c?(θ, T )

∫ 1

0

A(µNt , j
N
t ) dt

≤ c?(θ, T )

∫ 1

0

1

N

N−1∑
n=0

Ĵt(n)2

Nm̂t(n)
dt+

C

N

≤
∫ 1

0

1

N

N−1∑
n=0

AnN(mt, Jt) dt+
C

N

=

∫ 1

0

AN(mt, Jt) dt+
C

N

≤ W2
N(PNµ0, PNµ1) + ε+

C

N
.

(5.19)

Finally we note that, for i = 0, 1, (5.14) yields

W2(µi, µ
N
i ) ≤W2(µi, ιNPNµi) + W2(ιNPNµi, ιNmi) + W2(ιNmi, µ

N
i )

≤ 1

N
+
(
ε+

C

N

)
+

1

N

≤ ε+
C

N
,

which implies that

W2(µ0, µ1) ≤W2(µN0 , µ
N
1 ) + 2

(
ε+

C

N

)
. (5.20)

Combining (5.19) and (5.20) we obtain the desired result. �

6. Proof of the upper bound

In this section we present the proof of the upper bound for WN . The idea of the
proof of the upper bound is to start from optimal curves of measures at the continuous
level, and to introduce the optimal oscillation in their discretations, as determined by
the formula for the effective mobility (1.5).

Let α? = {α?k}K−1
k=0 be an optimiser in (1.5), and define P ?

N : P(S1)→P(TN) by(
P ?
Nµ
)
(n; k) := α?kµ

(
Ân
)
, where Ân :=

[ n
N
,
n+ 1

N

)
, (6.1)

as before. Slightly abusing notation, we also define P ?
N : C(S1;R)→ V (TN) by(

P ?
Nj
)
(n; k, k + 1) :=

( K−1∑
`=k+1

α?`

)
j
(
n
N

)
+

( k∑
`=0

α?`

)
j
(
n+1
N

)
.

Since
∑K−1

k=0 α
?
k = 1, the right-hand side is a convex combination of j

(
n
N

)
and j

(
n+1
N

)
.

Proposition 6.1 (Discretisation of the continuity equation). Let (µt)t∈[0,1] be a Borel
family of probability measures, and let (jt)t∈[0,1] be a Borel family of continuous functions
satisfying the continuity equation ∂tµ+∂xj = 0 on S1. Then the pair (mt, Jt)t∈[0,1] defined
by

mt := P ?
Nµt , Jt := P ?

Njt ,
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solves the continuity equation on TN .

Proof. As (µt, jt)t satisfies the continuity equation, we have∫ 1

0

(∫
S1
∂tφt(x) dµt(x) +

∫
S1
∂xφt(x)jt(x) dx

)
dt =

∫
S1
φ1(x) dµ1(x)−

∫
S1
φ0(x) dµ0(x)

for any smooth function φ : [0, 1]× S1 → R.
Let ψ : [0, 1] → R be smooth, and define ηε : S1 → R by ηε = χÂn ∗ ξ

ε for a smooth
mollifier ξε supported in an ε-neighbourhood of 0. Set φεt(x) = ψ(t)ηε(x). Applying the
weak formulation of the continuity equation to φε, and passing to the limit ε ↓ 0, we
obtain∫ 1

0

ψ′(t)µt(Ân) dt+

∫ 1

0

ψ(t)
(
jt
(
n+1
N

)
− jt

(
n
N

))
dt = ψ(1)µ1(Ân)− ψ(0)µ0(Ân) .

Multiplying this identity by α?k, and using the fact that

α?k
(
jt
(
n+1
N

)
− jt

(
n
N

))
= Jt(n; k, k + 1)− Jt(n; k − 1, k) ,

we obtain ∫ 1

0

ψ′(t)mt(n; k) dt+

∫ 1

0

ψ(t)
(
Jt(n; k, k + 1)− Jt(n; k − 1, k)

)
dt

= ψ(1)m1(n; k)− ψ(0)m0(n; k) ,

which is the distributional form of the discrete continuity equation (2.3). �

Lemma 6.2 (Consistency). For all µ ∈P(S1) we have

W2(µ, ιNP
?
Nµ) ≤ 1

N
.

Proof. This readily follows from the definitions; see [GKM18, Lemma 3.2] for a similar
result. �

The following proposition is the key result of this section. It proves the required upper
bound for the discrete energy under suitable regularity conditions.

For δ > 0, it will be useful to write

Pδ(S1) :=

{
µ = ρ dx ∈P(S1) : ρ ≥ δ > 0, Lip(ρ) ≤ 1

δ

}
.

Proposition 6.3 (Discrete energy upper bound). Let δ > 0. There exists C < ∞ and
N̄ ∈ N (depending on δ), such that for any N ≥ N̄ , all µ ∈Pδ(S1), and all vector fields
j : S1 → R with ‖j‖L∞ + Lip(j) ≤ δ−1, we have

AN(P ?
Nµ, P

?
Nj) ≤ c?(θ, T )A(µ, j) +

C

N
.

Proof. Write m = P ?
Nµ and J = P ?

Nj for brevity, and set ρ̄(n) := Nµ(Ân). Recall that

AN(m, J) =
1

N

N−1∑
n=0

AnN(m, J)
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where

AnN(m, J) =
K−1∑
k=0

dk,k+1fk,k+1

(
N
m(n; k)

πk
, N

m(n; k + 1)

πk+1

, J(n; k, k + 1)

)

=
1

ρ̄(n)

K−1∑
k=0

dk,k+1
(J(n; k, k + 1))2

θk,k+1

(α(n;k)
πk

, α(n;k+1)
πk+1

) ,
with α(n; k) := m(n;k)

µ(Ân)
for k = 0, . . . , K. Note that α(n; k) = α?k for k = 0, . . . , K − 1,

but

α(n;K) =
m(n+ 1; 0)

µ(Ân)
= α?0

µ(Ân+1)

µ(Ân)
,

which is not necessarily equal to α?K = α?0. Therefore, {α(n; k)}Kk=0 is not necessarily
an admissible competitor in (1.5). Write dµ(x) = ρ(x) dx. We claim that the following
estimates hold for sufficiently large N , with C <∞ depending only on θ and T :

|J(n; k, k + 1)− j(x)| ≤ Lip(j)

N
, (6.2)∣∣∣∣∣c?(θ, T )−

K−1∑
k=0

dk,k+1

θk,k+1

(
α(n;k)
πk

, α(n;k+1)
πk+1

)∣∣∣∣∣ ≤ C
Lip(ρ)

inf ρ

1

N
, (6.3)

the first one being valid for any x ∈
[
n
N
, n+1
N

]
and k = 0, . . . , K − 1. Indeed, writing

λk =
∑K−1

`=k+1 α
?
` , we obtain

|J(n; k, k + 1)− j(x)| ≤ λk|j( nN )− j(x)|+ (1− λk)|j(n+1
N

)− j(x)| ≤ Lip(j)

N
,

which proves (6.2). Furthermore,

E :=

∣∣∣∣∣∣c?(θ, T )−
K−1∑
k=0

dk,k+1

θk,k+1

(
α(n;k)
πk

, α(n;k+1)
πk+1

)
∣∣∣∣∣∣

= dK−1,K

∣∣∣∣∣∣ 1

θK−1,K

(
α?K−1

πK−1
,
α?K
πK

) − 1

θK−1,K

(
α?K−1

πK−1
, α(n;K)

πK

)
∣∣∣∣∣∣ .

Note that

|α?K − α(n;K)| = α?K

∣∣∣∣1− µ(Ân+1)

µ(Ân)

∣∣∣∣ = α?K
|µ(Ân)− µ(Ân+1)|

µ(Ân)
≤ α?K

N

Lip(ρ)

inf ρ
.

If α?K = 0, we infer that E = 0, in which case the claim is proved. If α?K > 0, we observe
that the latter inequality yields

α(n;K) ≥ α?K
2

(6.4)

for N sufficiently large (depending on δ). Since θK−1,K is concave, we have for any a ≥ 0
and 0 < b ≤ y1 < y2,

θK−1,K

(
a, y2

)
− θK−1,K

(
a, y1

)
y2 − y1

≤
θK−1,K

(
a, b
)
− θK−1,K

(
a, 0
)

b
,
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thus θK−1,K(a, ·) is Lipschitz on [b,∞). Let L < ∞ denote the Lipschitz constant of
θK−1,K

(α?K−1

πK−1
, ·
)
on
[α?K

2
,∞
)
. For N sufficiently large we obtain

E ≤ 1(
θK−1,K

(
α?K−1

πK−1
,
α?K
2πK

))2

∣∣∣θK−1,K

(
α?K−1

πK−1
,
α?K
πK

)
− θK−1,K

(
α?K−1

πK−1
, α(n;K)

πK

)∣∣∣
≤ L(

θK−1,K

(
α?K−1

πK−1
,
α?K
2πK

))2

α∗K
πK

Lip(ρ)

inf ρ

1

N

which yields our claim (6.3).
Taking into account that ρ̄(n) ≥ δ and ‖j‖∞ ≤ δ−1, it follows from (6.2) and a twofold

application of (6.3) that∣∣∣∣AnN(m, J)− c?(θ, T )
j2
(
n
N

)
ρ̄(n)

∣∣∣∣ ≤ j2
(
n
N

)
ρ̄(n)

∣∣∣∣∣c?(θ, T )−
K−1∑
k=0

dk,k+1

θk,k+1

(
α(n;k)
πk

, α(n;k+1)
πk+1

)∣∣∣∣∣
+

1

ρ̄(n)

K−1∑
k=0

dk,k+1

∣∣J2(n; k, k + 1)− j2
(
n
N

)∣∣
θk,k+1

(
α(n;k)
πk

, α(n;k+1)
πk+1

)
≤ C

N
+
C

N

∑
k

dk,k+1

θk,k+1

(
α(n;k)
πk

, α(n;k+1)
πk+1

)
≤ C

N
,

where C <∞ depends on T , θ, and δ. Consequently,

AN(m, J) ≤ c?(θ, T )

N

N−1∑
n=0

j2
(
n
N

)
ρ̄(n)

+
C

N
.

By the arithmetic-harmonic mean inequality,∣∣j( n
N

)∣∣2
ρ̄(n)

≤ N
∣∣j( n

N

)∣∣2 ∫
Ân

1

ρ(x)
dx ≤ N

∫
Ân

|j(x)|2

ρ(x)
dx+

C

N
.

We infer that

AN(m, J) ≤ c?(θ, T )A(µ, j) +
C

N
,

which completes the proof. �

The previous result shows that the sought upper bound can achieved once we assume
some regularity at the level of the solution of the continuity equation. Therefore in order
to conclude the proof of Theorem 1.1 we seek once again for a regularization procedure.

The following result collects some well-known properties of the heat flow on S1.

Lemma 6.4 (Regularisation by heat flow). Let s > 0. There exists a constant δ > 0
such that for any µ ∈P(S1) we have Hsµ ∈Pδ(S1). Moreover, W2(µ,Hsµ) ≤

√
2s.

Proof. See, e.g., [GM13, Proposition 2.9] for a proof of these well-known facts. �

We continue with a well-known regularisation result. For the convenience of the reader
we include a simple proof.
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Lemma 6.5 (Smooth approximate action minimisers). Let δ > 0 and let ε > 0. Then
there exists δ̃ ∈ (0, δ), such that the following assertion holds: for any µ0, µ1 ∈ Pδ(S1)

there exists a curve (µt, jt) ∈ CE(µ0, µ1) with µt ∈ Pδ̃(S1) and ‖jt‖L∞ + Lip(jt) ≤ δ̃−1

for any t ∈ (0, 1), such that∫ 1

0

A(µt, jt) dt ≤W2
2(µ0, µ1) + ε .

Proof. Let (µt)t∈[0,1] be a W2-geodesic connecting µ0 and µ1, and let (jt)t∈[0,1] be a vector
field such that ∫ 1

0

A(µt, jt) dt = W2
2(µ0, µ1) .

The idea of the proof is to regularise µ0 and µ1 by applying the heat flow for a short time
s > 0, and then to connect the regularised measures Hsµ0 and Hsµ1 using the natural
candidate (Hsµt)t∈[0,1].

Firstly, for i = 0, 1 and s > 0, set γi,st = Hstµi for t ∈ [0, 1], and let ρi,st be the density
of γi,st with respect to the Haar measure. Then: ∂tγi,st = s∂2

xγ
i,s
t , thus the continuity

equation ∂tρ
i,s
t + ∂xk

i,s
t = 0 holds with ki,st = −s∂xρi,st . Using the contractivity of the

Fisher information under the heat flow, and the fact that µi ∈Pδ(S1), we obtain∫ 1

0

A(γi,st , k
i,s
t ) dt = s2

∫ 1

0

∫
S1

|∂xρi,st (x)|2

ρst(x)
dx dt ≤ s2

∫
S1

|∂xρi,s0 (x)|2

ρs0(x)
dx ≤ s2

δ3
.

Secondly, for any s > 0, we note that (Hsµt, Hsjt)t∈[0,1] solves the continuity equation,
and, by the joint convexity of A and the fact that Hs is given by a convolution kernel,

A(Hsµt, Hsjt) ≤ A(µt, jt) .

Fix τ ∈ (0, 1
2
), and consider now the curve (µ̃t, j̃t)t∈[0,1] ∈ CE(µ0, µ1) defined by

µ̃t :=


Hts/τµ0

Hsµ(t−τ)/(1−2τ)

H(1−t)s/τµ1

, j̃t :=


1
τ
k0,s
t/τ t ∈ (0, τ)

1
1−2τ

Hsj(t−τ)/(1−2τ) t ∈ (τ, 1− τ)

− 1
τ
k1,s

1−t/τ t ∈ (1− τ, 1)

,

It follows from the bounds above, using the fact that 1
1−2τ

≤ 1 + 4τ and W2
2 ≤ 1

4
, that∫ 1

0

A(µ̃t, j̃t) dt =

∫ 1

0

A(γ0,s
t , k0,s

t )

τ
+

A(Hsµt, Hsjt)

1− 2τ
+

A(γ1,s
t , k1,s

t )

τ
dt

≤ s2

δ3τ
+

W2
2(µ0, µ1)

1− 2τ
+

s2

δ3τ

≤ s2

δ3τ
+ (W2

2(µ0, µ1) + τ) +
s2

δ3τ
.

Let ε > 0, and choose τ = ε/2, and s2 = δ3τε/4. Then:
∫ 1

0
A(µ̃t, j̃t) dt ≤W2

2(µ0, µ1) + ε.
Moreover, by Lemma 6.4, µ̃t belongs to Pδ̃(S1) for some δ̃ > 0 depending on δ and s.

Furthermore,

‖Hsjt‖L∞(S1) + ‖∂xHsjt‖L∞(S1) ≤ C(s)‖jt‖L1(S1) ≤ C(s)
√

A(µt, jt) = C(s)W2(µ0, µ1) ,

where the last inequality follows from the Cauchy-Schwarz inequality. �

We are now ready to prove the upper bound in Theorem 1.1.
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Theorem 6.6 (Upper bound for WN). For any mesh T and any family of admisible of
means {θk,k+1}k we have

lim sup
N→∞

W2
N(PNµ0, PNµ1) ≤ c?(θ, T )W2

2(µ0, µ1) ,

uniformly for all µ0, µ1 ∈P(S1). More precisely, for any ε > 0 there exist C <∞ and
N̄ ∈ N such that for any N ≥ N̄ and µ0, µ1 ∈P(S1), we have

W2
N(PNµ0, PNµ1) ≤ c?(θ, T )W2

2(µ0, µ1) + ε+
C

N
. (6.5)

Proof. Let µ0, µ1 ∈ P(S1) and ε ∈ (0, 1]. By Lemma 6.4 there exist s ≥ 0 and δ > 0
such that µ̃i := Hsµi belongs to Pδ(S1), and

W2(µi, µ̃i) ≤ ε for i = 0, 1 .

Using that W2 ≤ 1
2
, it follows that

W2
2(µ̃0, µ̃1) ≤W2

2(µ0, µ1) + 2ε . (6.6)

Lemma 6.5 yields δ̃ ∈ (0, δ) and a curve (µ̃t, j̃t)t ∈ CEδ̃(µ̃0, µ̃1) such that µ̃t ∈ Pδ̃(S1)

and ‖j̃t‖L∞ + Lip(j̃t) ≤ δ̃−1 for any t ∈ (0, 1), and∫ 1

0

A(µ̃t, j̃t) dt ≤W2
2(µ̃0, µ̃1) + ε . (6.7)

Set m̃N
t := P ?

N µ̃t and J̃Nt = P ?
N j̃t. By Proposition 6.3 there exists C1 <∞ depending on

ε (through δ̃) such that

W2
N(m̃N

0 , m̃
N
1 ) ≤

∫ 1

0

A(m̃N
t , J̃

N
t ) dt ≤ c?(θ, r)

∫ 1

0

A(µ̃t, j̃t) dt+
C1

N
. (6.8)

Set mN
i := P ?

Nµi for i = 0, 1. By Proposition 2.6, Lemma 6.2, and Lemma 6.4, there
exists C2 <∞ depending only on T (possibly varying from line to line) such that

WN(mN
i , m̃

N
i ) =WN(P ?

Nµi, P
?
NHsµi)

≤ C2

(
W2(ιNP

?
Nµi, ιNP

?
NHsµi) +

1

N

)
≤ C2

(
W2(µi, Hsµi) +

1

N

)
≤ C2

(√
s+

1

N

)
.

Thus, the triangle inequality yields

WN(mN
0 ,m

N
1 ) ≤ WN(m̃N

0 , m̃
N
1 ) + C2

(√
s+

1

N

)
,

and by another application of Proposition 2.6,

W2
N(mN

0 ,m
N
1 ) ≤ W2

N(m̃N
0 , m̃

N
1 ) + C2

(√
s+

1

N

)
. (6.9)

Combining (6.6), (6.7), (6.8), and (6.9), we obtain

W2
N(mN

0 ,m
N
1 ) ≤ c?(θ, r)W2

2(µ0, µ1) + 3ε+
C1

N
+ C2

(√
s+

1

N

)
.

Choosing s depending on ε we obtain the result. �
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7. Proof of the Gromov–Hausdorff convergence

We conclude this work with the proof of the Gromov–Hausdorff convergence in The-
orem 1.1. First we recall one of the equivalent definitions; cf. [BBI01] for more details.

Definition 7.1 (Gromov–Hausdorff convergence). A sequence of compact metric spaces
{XN , dN}N is said to converge in the sense of Gromov–Hausdorff to a compact metric
space (X , d), if there exist maps fN : X → XN with the following properties:

• ε-isometry: for any ε > 0 there exists N̄ ∈ N such that for any N ≥ N̄ and any
x, y ∈ X , we have:

| dN(fN(x), fN(y))− d(x, y)| ≤ ε ;

• ε-surjectivity: for any ε > 0 there exists N̄ ∈ N such that for any N ≥ N̄ and
any z ∈ XN there exists x ∈ X satisfying

dN(fN(x), z) ≤ ε .

Proof of Theorem 1.1. As the desired lower and upper bounds for the distance have been
proved in Theorems 5.4 and 6.6, it remains to prove the Gromov–Hausdorff convergence.

Let ε > 0. It follows from Theorems 5.4 and 6.6 that there exists N̄ ∈ N such that,
for any N ≥ N̄ and µ0, µ1 ∈P(S1),∣∣∣WN(PNµ0, PNµ1)−

√
c?(θ, T )W2(µ0, µ1)

∣∣∣ ≤ ε .

This shows that the map PN is ε-isometric.
The ε-surjectivity of PN holds trivially, since it is even surjective. �
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