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Abstract. We study, in L1 with respect to the Gaussian measure, non-

tangential maximal functions and conical square functions associated with the
Ornstein-Uhlenbeck operator by developing a set of techniques which allow us,

to some extent, to compensate for the non-doubling character of the gaussian

measure. This complements recent results on gaussian Hardy spaces due to
Mauceri and Meda.

1. Introduction

Gaussian harmonic analysis, understood as the study of objects associated with
the Gaussian measure

dγ(x) = π−n/2 exp(−|x|2) dx

on Rn, and the Ornstein-Uhlenbeck operator

Lf(x) = − 1
2∆f(x) + x · ∇f(x)

on function spaces such as L2(Rn; γ), has recently gained new momentum following
the development, by Mauceri and Meda [9], of an atomic Hardy space H1

at(Rn; γ),
on which various functions of L give rise to bounded operators. Harmonic analysis
in Lp(γ) has been relatively well established for some time, with results such as
the boundedness of Riesz transforms going back to the work of Meyer and Pisier
in the 1980’s. The p = 1 case, however, has always proven to be difficult. Over
the last 30 years, some weak type (1, 1) estimates have been obtained, while others
have been disproved (see the survey [12]). The proofs of these results have relied on
subtle decompositions and estimates of kernels. Until the seminal Mauceri-Meda
paper appeared in 2007, a large part of euclidean harmonic analysis, such as end
point estimates using Hardy and BMO spaces, seemed to have no gaussian counter-
part. Gaussian harmonic analysis in L2(γ) is relatively straightforward given the
fact that the Ornstein-Uhlenbeck operator is diagonal with respect to the Hermite
polynomials basis. The Lp(γ) case, with 1 < p <∞, is harder but still manageable
through kernel estimates. The end points p = 1 and p = ∞, however, usually
require techniques such as Whitney coverings and Calderón-Zygmund decomposi-
tions, for which the non-doubling nature of the gaussian measure, has, so far, not
been overcome. Mauceri and Meda’s paper [9], though, indicates a possible way.
They introduced the notion of admissible balls; these are balls B(x, r) with the
property that r ≤ amin(1, 1

|x| ) for some fixed admissibility parameter a > 0. On
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these admissible balls, the gaussian measure turns out to be doubling. The idea is
then to follow classical arguments using admissible balls only. This is easier said
than done. Indeed, admissible balls need to be very small when their centre is far
away from the origin, whereas tools such as Whitney decompositions of open sets
require the size of balls to be comparable to their distance to the boundary of the
set, hence possibly very large. This may be why, although it contains many break-
through results, Mauceri and Meda’s paper [9] does not yet give a full theory of
H1 and BMO spaces for the gaussian measure. For instance, the boundedness of
key operators such as maximal functions, conical square functions (area integrals),
and above all Riesz transforms, is still missing. In fact, while this paper was in
its final stages, Mauceri, Meda, and Sjögren have posted a result [10] proving that
Riesz transforms (more precisely some Riesz transforms, see their paper for the de-
tails) are bounded on the Mauceri-Meda Hardy space only in dimension one. This
suggests that a correct H1(γ) space should be a modification of theirs.

In this paper, we take another step towards a satisfying H1(γ) theory by study-
ing, in L1(γ), non-tangential maximal functions and square functions. These are
gaussian analogues of the sublinear operators which, in the euclidean setting, are
the cornerstones of the real variable theory of H1. In the gaussian context, they
were first introduced by Fabes and Forzani, who studied a gaussian counterpart of
the Lusin area integral. Its Lp-boundedness was shown subsequenly by Forzani,
Scotto, and Urbina [6]. Our definition is an averaged version of a non-tangential
maximal function from a subsequent paper of Pineda and Urbina [11]. The addi-
tional averaging adds some technical difficulties, but experience has shown (see e.g.
[7]) that such averaging can be helpful in Hardy space theory and its applications
(to boundary value problems for instance).

Here we prove a change of aperture formula for the maximal function in the
spirit of one of the key estimates of Coifman, Meyer and Stein [3]. We then show
that the non-tangential square function is controlled by the non-tangential maximal
function. Such estimates are central in Hardy space theory (see for instance [4, 5]).
However, many pieces of the puzzle are still missing, and future work will need
to focus on the reverse estimates, along with the closely related issue of molecular
decompositions. In this direction we have developed gaussian Whitney covering
techniques and studied gaussian tent spaces in [8].

Now let us state the main result of this paper. For test functions u ∈ Cc(Rn)
and M1,M2 > 0 we consider the non-tangential maximal function with parameters
M1,M2

T ∗(M1,M2)u(x) := sup
(y,t)∈Γ

(M1,M2)
x (γ)

(
1

γ(B(y,M1t))

∫
B(y,M1t)

|e−t
2Lu(z)|2dγ(z)

) 1
2

,

where

Γ(M1,M2)
x (γ) :=

{
(y, t) ∈ Rn × (0,∞) : |y − x| < M1t < M2 min

{
1,

1

|x|
}}

is the admissible cone with parameters M1,M2 based at the point x ∈ Rn. The
parameter M1 is called the aperture of the cone, while M2

M1
is an admissibility

parameter for the balls involved.
The main result of this paper reads as follows.
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Theorem 1.1. For each u ∈ L1(γ), the square function defined by

Su(x) =
(∫

Γ
(1,1)
x (γ)

1

γ(B(y, t))
|t∇e−t

2Lu(y)|2 dγ(y)
dt

t

) 1
2

is controlled by the non-tangential maximal function in the following sense: there
exists an admissibility constant a ≥ 1, independent of u, such that

‖Su‖L1(γ) . ‖T ∗(1,a)u‖L1(γ).

2. Covering lemmas

In this section we introduce partitions of Rn into admissible dyadic cubes and
use them to prove two covering lemmas which will be needed later on.

We begin with a brief discussion of admissible balls. Let

m(x) := min
{

1,
1

|x|

}
, x ∈ Rn.

For a > 0 we define

Ba :=
{
B(x, r) : x ∈ Rn, 0 ≤ r ≤ am(x)

}
.

The balls in Ba are said to be admissible at scale a. It is a fundamental observation
of Mauceri and Meda [9] that admissible balls enjoy a doubling property:

Lemma 2.1 (Doubling property). Let a, τ > 0. There exists a constant d = dα,τ,n,
depending only on a, τ , and the dimension n, such that if B1 = B(c1, r1) ∈ Ba and
B2 = B(c2, r2) have non-empty intersection and r2 ≤ τr1, then

γ(B2) ≤ dγ(B1).

In particular this lemma implies that for all a > 0 there exists a constant d′ = d′a
such that for all B(x, r) ∈ Ba we have

γ(B(x, 2r)) ≤ d′γ(B(x, r)).

The first part of the next lemma, which is taken from [8], says, among other
things, that if B(x, r) ∈ Ba and |x− y| < br, then B(y, r) ∈ Bc for some constant
c = ca,b which depends only on a and b.

Lemma 2.2. Let a, b > 0 be given.

(i) If r ≤ am(x) and |x− y| < br, then r ≤ ca,bm(y), where ca,b := a(1 + ab).
(ii) If |x− y| < bm(x), then m(x) ≤ (1 + b)m(y) and m(y) ≤ (2 + 2b)m(x).

Lemma 2.3. Let a, b > 0 be given. If B(x, s) ∈ Ba and B(y, t) ∈ Bb have non-
empty intersection, then

|x− y| < kmin{m(x),m(y)},

where k = ka,b = max
{

2amax{a+ b, 1}+ b, 2bmax{a+ b, 1}+ a
}
.

Proof. If |y| ≤ 1, then m(x) ≤ 1 = m(y).
If |y| ≥ 1 and |y| ≤ 2(a+ b), then

m(x) ≤ 1 ≤ 2(a+ b)
1

|y|
= 2(a+ b)m(y).
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Suppose next that |y| ≥ 1 and |y| = C(a+b) with C > 2. Then |x| ≥ |y|−s−t ≥
|y| − a− b = (C − 1)(a+ b), so

m(x) ≤ 1

|x|
≤ C

C − 1

1

C(a+ b)
=

C

C − 1

1

|y|
=

C

C − 1
m(y) ≤ 2m(y).

Hence, in each of these three cases,

|x− y| < s+ t ≤ am(x) + bm(y) ≤ (2amax{a+ b, 1}+ b)m(y).

By symmetry, the same argument yields |x− y| < (2bmax{a+ b, 1}+ a)m(x), and
the result follows. �

For k ≥ 0 let ∆k be the set of dyadic cubes at scale k, i.e.,

∆k = {2−k(x+ [0, 1)n) : x ∈ Zn}.

Following [8], in the Gaussian we only use cubes whose diameter depends on another
parameter l, which keeps track of the distance from the ball to the origin. More
precisely, define the layers

L0 = [−1, 1)n, Ll = [−2l, 2l)n \ [−2l−1, 2l−1)n (l ≥ 1),

and define, for k, l ≥ 0,

∆γ
k,l = {Q ∈ ∆l+k : Q ⊆ Ll}, ∆γ

k =
⋃
l≥0

∆γ
k,l, ∆γ =

⋃
k≥0

∆γ
k .

Note that if Q ∈ ∆γ
k with Q ⊆ Ll, then its centre x has norm 2l−1 ≤ |x| ≤ 2l

√
n

and diam(Q) = 2−k−l
√
n.

We denote by α ◦ Q the cube with the same centre as Q and α times its side-
length; similar notation is used for balls. Cubes in ∆γ enjoy the following doubling
property:

Lemma 2.4. Let α > 0. There exists a constant Cα,n, depending only on α and
the dimension n, such that for every cube Q ∈ ∆γ , we have

γ(α ◦Q) ≤ Cα,nγ(Q).

Proof. Without loss of generality we may assume that α > 1. Let Q ∈ ∆γ
k,l with

center y and side-length 2s. Set B = B(y, s) and note that B ⊆ Q. Moreover, we
have α ◦Q ⊆ α

√
n ◦B. Since, if |y| > 1,

2s =
diam(Q)√

n
= 2−k−l ≤ 2−l ≤

√
n

|y|
=
√
nm(y),

and, if |y| ≤ 1,

2s = 2−k−l ≤ 1 ≤
√
nm(y),

it follows that B ∈ B√n/2. Using the doubling property for admissible balls from
Lemma 2.1 we now obtain

γ(α ◦Q) ≤ γ(α
√
n ◦B) ≤ Cα,nγ(B) ≤ Cα,nγ(Q).

�
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Lemma 2.5. There exists a constant K ≥ 0, depending only on the dimension
n, such that any measurable set E ⊆ Rn satisfying γ(E) > 0 admits a covering
(Bk)k≥1 with admissible balls from B1 such that∑

k≥1

γ(Bk) ≤ Kγ(E).

Proof. By the outer regularity of γ we find an open set O ⊇ E such that γ(O) ≤
2γ(E). Thus it remains to prove the lemma for a non-empty open set O.

For each x ∈ O let Qx be the largest cube in ∆γ such that x ∈ Qx ⊆ O. Note
that for any two x, y ∈ O we either have Qx = Qy or Qx ∩Qy = ∅. It follows that
we can find a sequence (xk)k≥1 such that the cubes Qxk are disjoint and cover O.
Let ck be the centre of Qxk and let dk =

√
nrk, where rk is the side-length of Qxk .

The balls B(ck,
1
2dk) cover O. We claim that each of those balls belongs to B 1

2n
.

Indeed, if Qxk is in layer Ll and |ck| ≥ 1, then

dk =
√
nrk ≤ 2−l

√
n ≤ n

|ck|
= nm(ck).

If |ck| < 1, then Qxk ⊆ L0 and rk ≤ 1, so

dk =
√
nrk ≤

√
n =
√
nm(ck) ≤ nm(ck).

This proves the claim. Moreover, from B(ck,
1
2dk) ⊆

√
n ◦ Qxk and the doubling

property for admissible cubes in Lemma 2.4, we see that∑
k≥1

γ(B(ck,
1
2dk)) ≤

∑
k≥1

γ(
√
n ◦Qxk) ≤ Cn

∑
k≥1

γ(Qxk) = Cnγ(O),

where Cn is a constant depending only on n.
We claim that there is a number Nn such that each ball B = B(cB , rB) in B 1

2n

can be covered by at most Nn balls in B1. Once this has been shown, the lemma
now follows since the balls B′ used in this covering satisfy γ(B′) ≤ Knγ(B) for
some constant Kn depending only on n by the doubling property.

To prove the claim we may assume that rB = 1
2nm(cB). We distinguish two

cases.
Case 1 – If |cB |2 ≤ 1

2n + 1
2 , then B is contained in the set {x ∈ Rn : |x| ≤√

1
2n+ 1

2 + 1
2n} and this set can be covered with finitely many balls – the number

of which depends only on n – in B1.
Case 2 – When |cB |2 > 1

2n + 1
2 we argue as follows. Clearly, B can be covered

with finitely many balls – the number depends only on n – of radius rB/n and
intersecting B. We will check that such balls belong to B1. Let B′ = B(c′, r′) be
such a ball. Using the estimate

|c′| ≤ |cB |+ rB + r′ ≤ |cB |+ rB +
rB
n

= |cB |+ ( 1
2n+ 1

2 )m(cB) = |cB |+
1
2n+ 1

2

|cB |
,

we obtain

r′ =
rB
n

=
m(cB)

2
=

1

2|cB |
≤ 1

|cB |+ ( 1
2n+ 1

2 )/|cB |
≤ 1

|c′|
,

where the second last inequality follows from ( 1
2n + 1

2 )/|cB |2 ≤ 1. Since also r′ =
rB
n = 1

2m(cB) ≤ 1, it follows that r′ ≤ m(c′). This finishes the proof of the claim.
�
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Lemma 2.6. Let F ⊆ Rn be a non-empty set, let a, b > 0 be fixed, and let

O := {x ∈ Rn : 0 < d(x, F ) ≤ am(x)}.

There exists a sequence (xk)k≥1 in O with the following properties:

(i) O ⊆
⋃
k≥1B(xk, bd(xk, F ));

(ii)
∑
k≥1 γ(B(xk, d(xk, F ))) . γ(O) with a constant depending only on a, b,

and the dimension n.

Proof. We split the proof into four steps.

Step 1 – We begin by noting that if the lemma holds for a certain pair (a, b),
then it also holds for all pairs (a, b′) with b′ > 0. This is trivial for b′ ≥ b, and for
0 < b′ < b this follows from the fact that any ball of radius br may be covered by
N balls of radius b′r, where N depends only on the ratio b/b′ and the dimension
n. Thus it suffices to prove the lemma for one specific value of b. We will choose
b = 1

4 because this is the value to which we shall apply the lemma.

Step 2 – Next we shall prove that without loss of generality we may assume
that a ≥ a0, where a0 > 0 is some fixed number. For this purpose suppose that
0 < a ≤ a′, set a′′ := min{a, 4}, and consider the sets

O′ :=
{
z ∈ Rn : 0 < d(z, F ) ≤ a′m(z)

}
,

O′′ :=
{
z ∈ Rn : 0 < d(z, F ) ≤ a′′m(z)

}
.

The claim will be proved once we show that γ(O′) . γ(O′′) with constant depending
only on a, a′, and n. This, in turn, shows that it suffices to prove an estimate
γ(O′) . γ(O) for any two numbers 0 < a ≤ a′ with a ≤ 4.

To prove this inequality we will show that there exists a number Mn, depending
only on a, a′, and n, and sequence of disjoint cubes Qi ∈ ∆γ contained in O such
that

O′ \O◦ ⊆
⋃
i

Mn ◦Qi.

Once this has been shown the claim follows from Lemma 2.4:

γ(O′ \O◦) ≤
∑
i

γ(Mn ◦Qi) .
∑
i

γ(Qi) = γ
(⋃
i

Qi
)
≤ γ(O)

and consequently γ(O′) . γ(O).
Every point x ∈ O◦, the interior of O, belongs to some maximal cube Qx ∈ ∆γ

with the property that 3 ◦ Qx is entirely contained in O◦. Since any two such
maximal cubes are either equal or disjoint, we may select a sequence (xi) in O◦

such that the maximal cubes Qxi ∈ ∆γ are disjoint and cover O◦. We will show
that these cubes have the desired property for a suitable choice of Mn.

Fix y ∈ O′ \ O◦. Then d(y, F ) = cm(y) for some a ≤ c ≤ a′. Choose f ∈ F
with d(f, y) = cm(y) (this is possible since F ∩ {z : d(y, z) ≤ 2cm(y)} is compact
and non-empty). By a continuity argument there exists 0 < λ < 1 such that for
g := (1 − λ)f + λy we have d(g, F ) = 1

4am(g). From d(y, F ) = d(y, f) and the
triangle inequality one easily deduces that also d(g, F ) = d(g, f), and therefore we
have d(g, f) = 1

4am(g). Then g ∈ O and |y − g| = (1 − λ)|y − f | = (1 − λ)cm(y).
Choose the index i such that g ∈ Qxi and let ci be the centre of Qxi . Then
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|g − ci| < 1
4a
√
nm(g), since otherwise the side-length of Qxi would be at least

1
2am(g) and then 3 ◦Qxi would contain the point f 6∈ O◦. It follows that

|ci − y| <
1

4
a
√
nm(g) + (1− λ)cm(y) <

1

4
a
√
nm(g) + a′m(y).

On the other hand, as we will show next, the side-length of 3 ◦ Qxi is at least
1

7
√
n
am(g).

Suppose the side-length of 3 ◦ Qxi were less than 1
7
√
n
am(g). Then the side-

length of Qxi is less than 1
21
√
n
am(g). We claim that 9 ◦ Qxi is still contained in

O◦. Suppose for the moment we knew this. It would mean that Qxi is contained
in a dyadic cube Q of twice the diameter which satisfies 3 ◦ Q ⊆ 9 ◦ Qx′i ⊆ O◦.
This contradicts the maximality of Qxi , since we also have Q ∈ ∆γ . The latter
can be seen as follows. Choose k, l ≥ 0 such that Qxi ∈ ∆γ

k,l. The side-length

of Qxi is then 2−l−k. From diam(Qxi) ≤ 1
21am(g) and g ∈ Qxi we infer that

2−l−k ≤ 1
21
√
n
am(g) ≤ 1

21
√
n

a
2l−1 , so 2−k ≤ 2a

21
√
n

, forcing that k ≥ 1 since we are

assuming that 0 < a ≤ 4. But then Q belongs to ∆γ
k−1,l with k−1 ≥ 0, so Q ∈ ∆γ .

It remains to show that if the side-length of 3◦Qxi were less than 1
7
√
n
am(g), then

9 ◦Qxi is contained in O◦. If z ∈ Rn is such that |z − g| < 1
4am(g) and d(g, F ) =

1
4am(g), then d(z, F ) > 0 and d(z, F ) < 1

2am(g) ≤ 1
2a(1+ 1

4a)m(z) ≤ am(z) (where
the second inequality follows from the first part of Lemma 2.2(ii) and the third from
the assumption that 0 < a ≤ 4), so that z ∈ O◦. Hence the ball B(g, 1

4am(g)) is

contained in O◦ and therefore it suffices to check that 9◦Qxi ⊆ B(g, 1
4am(g)). But

if z ∈ 9◦Qxi , then from g ∈ Qxi we infer that |z−g| < 5
√
n · 1

21
√
n
am(g) < 1

4am(g),

so z ∈ B(g, 1
4am(g)) as claimed.

We have now shown that the side-length of 3 ◦ Qxi is at least 1
7
√
n
am(g). It

follows that y ∈M ◦Qxi with

M :=
42
√
n

m(g)
(
1

4

√
nam(g) + a′m(y)) ≤ 42

√
n(

1

4

√
na+ a′(1 + a′)),

where we used the fact that m(y) ≤ (1+a′)m(g), which follows from Lemma 2.2(ii)
and the fact that |y − g| ≤ a′m(y). Thus the cubes Qxi have the desired property
for Ma,n := 42

√
n( 1

4

√
na+ a′(1 + a′)) will do.

Step 3 – With these preliminaries out of the way it remains to prove the lemma
for a ≥ 2 and b = 1

4 . For each x ∈ O the interval
[

1
4a
√
n
d(x, F ), 1

2a
√
n
d(x, F )

)
contains a unique number of the form 2−jx with jx ∈ Z; from

2−jx <
1

2a
√
n
d(x, F ) ≤ 1

2
√
n
m(x) ≤ 1

2

we see that jx ≥ 2. Let Qx be the unique dyadic cube in ∆jx containing x.
This cube has side-length 2−jx and diameter 2−jx

√
n. In particular, diam(Qx) <

1
2ad(x, F ). We claim that Qx ⊆ O′, where O′ is defined as in step 2 with a′ = 15

8 a,
i.e.,

O′ :=
{
z ∈ Rn : 0 < d(z, F ) ≤ 15

8
am(z)

}
.

Indeed, for all y ∈ Qx we have d(y, F ) ≥ d(x, F )− diam(Qx) > (1− 1
2a )d(x, F ) > 0

and d(y, F ) ≤ d(x, F ) + diam(Qx) < (1 + 1
2a )d(x, F ) ≤ (a + 1

2 )m(x) ≤ 3
2 (a +

1
2 )m(y) ≤ 15

8 am(y), where the last inequality uses a ≥ 2 and the second last
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follows from the fact that by Lemma 2.2(ii) the inequalities |x− y| < diam(Qx) <
1
2ad(x, F ) ≤ 1

2m(x) imply m(x) ≤ 3
2m(y). This proves the claim.

For any two x, y ∈ O we either have Qx∩Qy = ∅ or one of the cubes is (properly
or not) contained in the other. As a consequence, every x ∈ O is contained in a
maximal cube of the form Qx′ for some (possibly different) x′ ∈ O. Clearly, the
union V of these maximal cubes satisfies O ⊆ V ⊆ O′. Moreover, any two maximal
cubes are either the same or else disjoint.

Pick a sequence (xi)i≥1 in O such that the cubes Qxi are maximal and disjoint
and their union equals V . Consider the balls Bi := B(xi, di), where di := 2−jxi

√
n

is the diameter of Qxi . From Qxi ⊆ Bi we see that

O ⊆
⋃
i≥1

Bi

and (i) follows by noting that di <
1
2ad(xi, F ) ≤ 1

4d(xi, F ).
We claim that γ(3◦Qxi) . γ(Qxi) with a constant depending only on n. Taking

the claim for granted for the moment, (ii) is obtained as follows. In view of the
inequalities 1

4ad(xi, F ) ≤ di < 1
2ad(xi, F ) ≤ 1

2m(xi), the doubling property for balls
in B 1

2
, the inclusion Bi ⊆ 3 ◦Qxi , and the result proved in Step 2 imply∑

i≥1

γ(B(xi, d(xi, F ))) .
∑
k≥1

γ(Bi) ≤
∑
i≥1

γ(3 ◦Qxi)

.
∑
i≥1

γ(Qxi) ≤ γ(O′) . γ(O)

with constants depending only on a and n.

Step 4 – It remains to prove the claim that γ(3 ◦ Qxi) . γ(Qxi). The point is
to show that Qxi belongs to ∆γ ; once we know this, the claim is a consequence of
Lemma 2.4.

We will show that each of the cubes Qx constructed in Step 3 belong to ∆γ
k,l for

suitable k, l ≥ 0. Fix x ∈ O and suppose that x belongs to layer Llx . Suppose first
that lx = 0. The side-length of Qx equals 2−jx with jx ≥ 2. The cubes in ∆γ

0,0 have

side-length 1. Since x belongs to one of these cubes, we conclude that Qx ∈ ∆γ
jx,0

.

If lx ≥ 1, then |x| ≥ 1 and therefore m(x) = 1/|x| ≤ 2−lx+1. Since the side-
length of Qx equals 2−jx with 2−jx ≤ 1

2m(x) ≤ 2−lx , it follows that the side-length

is at most 2−lx , say 2−lx−kx for some integer kx ≥ 0. On the other hand, the cubes
in ∆γ

0,lx
have side-length 2−lx . Since x belongs to one of these cubes, we conclude

that Qx ∈ ∆γ
kx,lx

. This proves the claim. �

3. Change of aperture for maximal functions

In the proof of Theorem 1.1 we need the following change of aperture result for
the admissible cone appearing in the definition of non-tangential maximal functions.

Theorem 3.1. For all M1,M2 > 0 there exists a constant D, depending only on
M1, M2, and the dimension n, such that for all u ∈ L1(γ) and σ > 0 we have

γ
({
x ∈ Rn : T ∗(M1,M2)u(x) > σ

})
. γ

({
x ∈ Rn : T ∗(1,CM1,M2

)u(x) > Dσ
})

with CM1,M2
= M2

M1
(1 + 2M2)(1 + M2

M1
(1 + 2M2)) and with implied constant indepen-

dent of u and σ. In particular,

‖T ∗(M1,M2)u‖L1(γ) . ‖T ∗(1,CM1,M2
)u‖L1(γ)
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with implied constant independent of u.

The proof of this theorem depends on a lemma. Both follow known arguments
in the euclidean case (see [5]).

Lemma 3.2. Let F be a measurable subset of Rn, let a > 0 and C > 0 be fixed,
and put

F̃ := {x ∈ Rn : M∗a (1F )(x) > C},
where

M∗af(x) := sup
B(x,r)∈Ba

1

γ(B(x, r))

∫
B(x,r)

|f(y)| dγ(y)

Then γ(F̃ ) . γ(F ), with the implied constant only depending on a, C, and the
dimension n.

Proof. We may assume that γ(F ) > 0, since otherwise also γ(F̃ ) = 0. By Lemma
2.5 there exists a countable cover of F with admissible balls Bj = B(cj ,m(cj)) ∈ B1

which satisfies ∑
j

γ(Bj) ≤ Kγ(F ),

where K depends only on n. For any x ∈ F̃ there is an admissible ball B(x, r0) ∈ Ba
centred at x such that

1

γ(B(x, r0))

∫
B(x,r0)

1F (y) dγ(y) > C.

In particular, since 1F ≤
∑
j 1Bj ,∑

j

sup
B(x,r)∈Ba

1

γ(B(x, r))

∫
B(x,r)∩Bj

dγ(y)

≥
∑
j

1

γ(B(x, r0))

∫
B(x,r0)

1Bj (y) dγ(y) > C.

Integrating over F̃ we obtain

γ(F̃ ) ≤ 1

C

∑
j

∫
F̃

sup
B(x,r)∈Ba

1

γ(B(x, r))

∫
B(x,r)∩Bj

dγ(y) dγ(x)

=
1

C

∑
j

∫
F̃

sup
B(x,r)∈Ba

γ(B(x, r) ∩Bj)
γ(B(x, r))

dγ(x).

Fix j for the moment and suppose that x ∈ F̃ is such that the supremum in the
integral is non-zero. Then Bj∩B(x, r) 6= ∅ for some 0 < r ≤ am(x), and Lemma 2.3
implies that x ∈ B′j := B(cj , r

′
j), where r′j ≤ bm(cj) for some constant b depending

only on a. Therefore,∑
j

∫
F̃

sup
B(x,r)∈Ba

γ(B(x, r) ∩Bj)
γ(B(x, r))

dγ(x)

≤
∑
j

∫
B′j

sup
B(x,r)∈Ba

γ(B(x, r) ∩Bj)
γ(B(x, r))

dγ(x)

≤
∑
j

γ(B′j).
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By the doubling property for admissible balls, this gives

γ(F̃ ) .
∑
j

γ(B′j) .
∑
j

γ(Bj) . γ(F ).

�

Proof of Theorem 3.1. It suffices to prove the inequality for test functions u ∈
Cc(Rn).

For the rest of the proof we fix u ∈ Cc(Rn). We fix a constant C > 0 such that

γ(B(y, (1 + 4M1)t)) <
1

C
γ(B(y, t)) ∀B(y, t) ∈ BcM2/M1,2M1

,

where cM2/M1,2M1
= (1 + 2M2)M2

M1
is the constant arising from Lemma 2.2(i), and

define, for σ > 0,

Eσ := {x ∈ Rn : T ∗(1,CM1,M2
)u(x) > σ},

Ẽσ := {x ∈ Rn : M∗aM1,M2
(1Eσ )(x) > C},

where M∗af is defined as in the lemma and aM1,M2
:= (1+2M1)M2

M1
. In the estimates

that follow, the implicit constants are independent of u and σ.

Fix a point x 6∈ Ẽσ and a point (y, t) ∈ Γ
(2M1,2M2)
x (γ). We claim that B(y, t) 6⊆

Eσ. To prove this, first note that from |x− y| ≤ 2M1t we have

B(y, t) ⊆ B(x, (1 + 2M1)t) ⊆ B(y, (1 + 4M1)t).

Furthermore, (1 + 2M1)t ≤ (1 + 2M1)M2

M1
m(x), and therefore B(x, (1 + 2M1)t) ∈

B
(1+2M1)

M2
M1

= BaM1,M2
. If we now assume that the claim is false, we get

M∗(1Eσ )(x) = sup
B(x,r)∈BaM1,M2

γ(B(x, r) ∩ Eσ)

γ(B(x, r))

≥ sup
B(x,r)∈BaM1,M2

γ(B(x, r) ∩B(y, t))

γ(B(x, r))

≥ γ(B(x, (1 + 2M1)t) ∩B(y, t))

γ(B(x, (1 + 2M1)t))

=
γ(B(y, t))

γ(B(x, (1 + 2M1)t))

≥ γ(B(y, t))

γ(B(y, (1 + 4M1)t))

> C,

where the last inequality follows from the definition of the constant C and the
observation that B(y, t) ∈ BcM2/M1,2M1

by Lemma 2.2(i), using that B(x, t) ∈
BM2/M1

and |x− y| ≤ 2M1t. This contradicts the fact that x 6∈ Ẽσ and the claim
is proved.

So, since B(y, t) 6⊆ Eσ, there exists ỹ ∈ B(y, t) such that ỹ 6∈ Eσ, that is,

sup

(z,s)∈Γ
(1,CM1,M2

)

ỹ (γ)

1

γ(B(z, s))

∫
B(z,s)

|e−s
2Lu(ζ)|2 dγ(ζ) ≤ σ2.(3.1)
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In particular, since t ≤ cM2/M1,2M1
m(y), Lemma 2.2 implies that t ≤ CM1,M2

m(ỹ)

with CM1,M2
= cM2/M1,2M1

(1+cM2/M1,2M1
) and cM2/M1,2M1

= M2

M1
(1+2M2). Thus

(y, t) ∈ Γ
(1,CM1,M2

)

ỹ (γ) and therefore

(3.2)
1

γ(B(y, t))

∫
B(y,t)

|e−t
2Lu(ζ)|2 dγ(ζ) ≤ σ2,

and this estimate holds for all (y, t) ∈ Γ
(2M1,2M2)
x (γ) with x 6∈ Ẽσ.

Next let (w, t) ∈ Γ
(M1,M2)
x (γ) be arbitrary and fixed for the moment. Then

w ∈ B(x,M1t). For any y ∈ B(w,M1t) we have |y−x| ≤ |y−w|+ |w−x| ≤ 2M1t.

Since also 2M1t ≤ 2M2m(x), it follows that (y, t) ∈ Γ
(2M1,2M2)
x (γ). Also, since

|y − w| ≤M1t implies B(y, t) ⊆ B(w, (1 +M1)t), we have

γ(B(y, t)) ≤ γ(B(w, (1 +M1)t)) . γ(B(w,M1t))

by the doubling property for admissible balls; the balls B(w,M1t) are indeed ad-
missible by Lemma 2.2(i).

We can cover B(w,M1t) with finitely many balls of the form B(yi, t) with yi ∈
B(w,M1t); this can be achieved with N = N(M1, n) balls. We then have, by (3.2),

1

γ(B(w,M1t))

∫
B(w,M1t)

|e−t
2Lu(z)|2 dγ(z)

.
N∑
i=1

1

γ(B(yi, t))

∫
B(yi,t)

|e−t
2Lu(z)|2dγ(z) . σ2.

Taking the supremum over all (w, t) ∈ Γ
(M1,M2)
x (γ), we have shown that there

exists a constant D > 0, depending only on M1, M2, and the dimension n, such

that T ∗(M1,M2)u(x) ≤ Dσ for all x 6∈ Ẽσ.

We have now shown that {T ∗(M1,M2)u(x) > Dσ} ⊆ Ẽσ. The first assertion of the

theorem follows from this via Lemma 3.2. The second assertion follows from the
first by integration:

‖T ∗(M1,M2)u‖L1(γ) = D

∫ ∞
0

γ({x ∈ Rn : T ∗(M1,M2)u(x) > Dσ}) dσ

.
∫ ∞

0

γ(Ẽσ) dσ .
∫ ∞

0

γ(Eσ) dσ = ‖T ∗(1,CM1,M2
)u‖L1(γ).

Since the choice of M1,M2 ≥ 0 was arbitrary, this concludes the proof. �

4. Proof of Theorem 1.1

In this section we follow the method pioneered in [5] for proving square function
estimates in Hardy spaces. This method has recently been adapted in a variety
of contexts (see [1, 2, 7]). Here, we modify the version given in [7] to avoid using
the doubling property on non-admissible balls, and to take into account differences
between the Laplace and the Ornstein-Uhlenbeck operators. As a typical example
of the latter phenomenon, we start by proving a Gaussian version of the parabolic
Cacciopoli inequality. Recall that L is the Ornstein-Uhlenbeck operator, defined
for f ∈ Cc(Rn) by

(4.1) Lf(x) = − 1
2∆f(x) + x · ∇f(x).
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Note that, for all f, g ∈ C∞c (Rn),∫
Rn
Lf · g dγ =

1

2

∫
Rn
∇f · ∇g dγ

Lemma 4.1. Let u : Rn × (0,∞)→ C be a C1,2-function such that

∂tu+ Lu = 0

on I(x0, t0, 2r) := B(x0, 2cr)× [t0− 4r2, t0 + 4r2] for some r ∈ (0, 1), 0 < C0 ≤ c ≤
C1 <∞, and t0 > 4r2. Then∫

I(x0,t0,r)

|∇u(x, t)|2 dγ(x) dt .
1 + r|x0|

r2

∫
I(x0,t0,2r)

|u(x, t)|2 dγ(x) dt,

with implied constant depending only on the dimension n, C0 and C1.

Proof. Let η ∈ C∞(Rn × (0,∞)) be a cutoff function such that 0 ≤ η ≤ 1 on
Rn × (0,∞), η ≡ 1 on I(x0, t0, r), η ≡ 0 on the complement of I(x0, t0, 2r), and

‖∇η‖∞ .
1

r
, ‖∂tη‖∞ .

1

r2
, ‖∆η‖∞ .

1

r2

with implied constants depending only on n, C0, C1. Then, in view of ‖x ·∇η‖∞ .
(|x0|+ 2r) · 1

r and recalling that 0 < r < 1,

(4.2) ‖Lη‖∞ .
1

r2
+

1

r
|x0|+ 1 .

1 + r|x0|
r2

,

where the implied constants depend only on n, C0, C1.
Considering real and imaginary parts separately, we may assume that all func-

tions are real-valued. Integrating the identity

(η∇u) · (η∇u) = (u∇η −∇(uη)) · (u∇η −∇(uη))

and then using that∫
I(x0,t0,2r)

η2∇(uη) · ∇(uη) dγ dt ≤
∞∫

0

∫
Rd
∇(uη) · ∇(uη) dγ dt

= 2

∞∫
0

∫
Rn

(uη)L(uη) dγ dt

= 2

∫
I(x0,t0,2r)

uηL(uη) dγ dt,

we obtain

(4.3)

∫
I(x0,t0,r)

|∇u|2 dγ dt ≤
∫
I(x0,t0,2r)

η2|η∇u|2 dγ dt

≤
∫
I(x0,t0,2r)

η2|u∇η|2 dγ dt

+

∫
I(x0,t0,2r)

2uη2∇(uη) · ∇η dγ dt

+ 2

∫
I(x0,t0,2r)

(uη)L(uη) dγ dt.
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For the first term on the right-hand side we have the estimate∫
I(x0,t0,2r)

η2|u∇η|2 dγ dt . 1

r2

∫
I(x0,t0,2r)

|u|2 dγ dt.

For the second term we have, by (4.2),∣∣∣ ∫
I(x0,t0,2r)

2uη2∇(uη) · ∇η dγ dt
∣∣∣ =

1

2

∣∣∣ ∫
I(x0,t0,2r)

∇(uη)2 · ∇η2 dγ dt
∣∣∣

≤
∣∣∣ ∫

Rn
(uη)2Lη2 dγ dt

∣∣∣
.

1 + r|x0|
r2

∫
I(x0,t0,2r)

|u|2 dγ dt

where we used the fact that η2 satisfies the same assumptions as η and (4.2) was ap-
plied to η2. To estimate the third term on the right-hand side of (4.3) we substitute
the identity

(4.4) L(uη) = ηLu+ uLη +∇u · ∇η = −η∂tu+ uLη +∇u · ∇η
and estimate each of the resulting integrals:∣∣∣ ∫

I(x0,t0,2r)

uη2∂tu dγ dt
∣∣∣ =

1

2

∣∣∣ ∫
I(x0,t0,2r)

η2∂tu
2 dγ dt

∣∣∣
=

1

2

∣∣∣ ∫
I(x0,t0,2r)

u2∂tη
2 dγ dt

∣∣∣
=
∣∣∣ ∫
I(x0,t0,2r)

u2η∂tη dγ dt
∣∣∣

.
1

r2

∫
I(x0,t0,2r)

|u|2 dγ dt,∣∣∣ ∫
I(x0,t0,2r)

u2ηLη dγ dt
∣∣∣ . 1 + r|x0|

r2

∫
I(x0,t0,2r)

|u|2 dγ dt,∣∣∣ ∫
I(x0,t0,2r)

uη∇u · ∇η dγ dt
∣∣∣ =

1

4

∣∣∣ ∫
I(x0,t0,2r)

∇u2 · ∇η2 dγ dt
∣∣∣

=
1

2

∣∣∣ ∫
I(x0,t0,2r)

u2Lη2 dγ dt
∣∣∣

.
1 + r|x0|

r2

∫
I(x0,t0,2r)

|u|2 dγ dt.

�

We can now prove the main result of this paper. Recall that

Su(x) =
(∫

Γ
(1,1)
x (γ)

1

γ(B(y, t))
|t∇e−t

2Lu(y)|2 dy dt
t

) 1
2

=
(∫

Rn×(0,∞)

1B(x,t)(y)

γ(B(y, t))
1(0,m(y))(t)|t∇e−t

2Lu(y)|2 dy dt
t

) 1
2

.

It will be convenient to define, for ε > 0,

Sεu(x) :=
(∫

Rn×(0,∞)

1B(x,t)(y)

γ(B(y, t))
1(ε,m(y))(t)|t∇e−t

2Lu(y)|2 dy dt
t

) 1
2

.
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Proof of Theorem 1.1. As in the proof of Lemma 4.1 it suffices to consider real-
valued u ∈ Cc(Rn).

Let F ⊆ Rn be an arbitrary closed set and define

F ∗ :=
{
x ∈ Rn : γ(F ∩B(x, r)) ≥ 1

2γ(B(x, r)) ∀r ∈ (0, c2,2m(x)]
}
,

where c2,2 has been defined in Lemma 2.2. For 0 < ε < 1 and 1 < α < 2 put

Rεα(F ∗) := {(y, t) ∈ Rn × (0,∞) : d(y, F ∗) < αt and t ∈ (α−1ε, αm(y))}

and let ∂Rεα(F ∗) be its topological boundary. As in [5, page 162] and [13, page 206]
we may regularise this set and thus assume it admits a surface measure dσεα(y, t).
Applying first Green’s formula in Rn to the section of Rεα(F ∗) at level t and using
(4.1), and subsequently the fundamental theorem of calculus in the t-variable, we
obtain the estimate∫
F∗
|Sεu(x)|2 dγ(x) ≤

∫
Rεα(F∗)

|t∇e−t
2Lu(y)|2 dy dt

t

.
∫
Rεα(F∗)

tLe−t
2Lu(y) · e−t

2Lu(y) dγ(y) dt

+

∫
∂Rεα(F∗)

|t∇e−t
2Lu · ν//(y, t)||e−t

2Lu(y)|e−|y|
2

dσεα(y, t)

.
∫
Rεα(F∗)

−∂t|e−t
2Lu(y)|2 dγ(y) dt

+

∫
∂Rεα(F∗)

|t∇e−t
2Lu(y)||e−t

2Lu(y)|e−|y|
2

dσεα(y, t)

.
∫
∂Rεα(F∗)

|e−t
2Lu(y)ν⊥(y, t)|2e−|y|

2

dσεα(y, t)

+

∫
∂Rεα(F∗)

|t∇e−t
2Lu(y)||e−t

2Lu(y)|e−|y|
2

dσεα(y, t).

In the above computation, ν// denotes the projection of the normal vector ν to
Rεα onto Rn and ν⊥ the projection of ν in the t direction. Of course, all implied
constants in the above inequalities are independent of F , ε, α, and u.

Next we note that ∂Rεα(F ∗) ⊆ Bε, where

Bε := B̃ε1 ∪ B̃ε2 ∪ B̃ε3
with

B̃ε1 := {(y, t) ∈ Rn × (0,∞) : t ∈ [ 1
2ε,min{ε,m(y)}] and d(y, F ∗) ≤ 2t},

B̃ε2 := {(y, t) ∈ Rn × (0,∞) : t ∈ [ε,m(y)] and t ≤ d(y, F ∗) ≤ 2t},

B̃ε3 := {(y, t) ∈ Rn × (0,∞) : t ∈ [m(y), 2m(y)] and d(y, F ∗) ≤ 2t}.

Now notice that, on ∂Rεα(F ∗), we have either t = ε
α , t = αm(y), or t = d(y,F∗)

α .

Integrating over α ∈ (1, 2) with respect to dα
α and changing variables using that

dα
α ∼

dt
t , we get∫
F∗
|Sεu|2 dγ .

∫
Bε
|e−t

2Lu(y)|2dy dt
t
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+
(∫

Bε
|e−t

2Lu(y)|2dy dt
t

) 1
2
(∫

Bε
|t∇e−t

2Lu(y)|2dy dt
t

) 1
2

.
∫
Bε
|e−t

2Lu(y)|2dy dt
t

+

∫
Bε
|t∇e−t

2Lu(y)|2dy dt
t
.

Here, and in the estimates to follow, the implied constants are independent of F ,
ε, and u.

We have to estimate the following six integrals:

I1 :=

∫
B̃ε1

|e−t
2Lu(y)|2dy dt

t
, I2 :=

∫
B̃ε1

|t∇e−t
2Lu(y)|2dy dt

t
,

I3 :=

∫
B̃ε2

|e−t
2Lu(y)|2dy dt

t
, I4 :=

∫
B̃ε2

|t∇e−t
2Lu(y)|2dy dt

t
,

I5 :=

∫
B̃ε3

|e−t
2Lu(y)|2dy dt

t
, I6 :=

∫
B̃ε3

|t∇e−t
2Lu(y)|2dy dt

t
.

We start with I1 and remark that, for (y, t) ∈ B̃ε1, there exists x ∈ F ∗ such
that |x − y| ≤ 2t. Since t ≤ min{ε,m(y)} ≤ m(y), by Lemma 2.2(i) we have
t ≤ c1,2m(x) ≤ c2,2m(x) (the last estimate looks redundant, but the reader may
check that in the estimation of I5 below we shall only get an estimate with c2,2).
Therefore, by the definition of F ∗,

γ(F ∩B(x, t)) ≥ 1
2γ(B(x, t)).

This implies, via the doubling property for the admissible ball B(x, t) ∈ Bc1,2 ,

γ(F ∩B(y, 3t)) ≥ γ(F ∩B(x, t)) ≥ 1
2γ(B(x, t)) & γ(B(x, 3t)) ≥ γ(B(y, t)),

and therefore

(4.5)

I1 .
∫
B̃ε1

∫
F∩B(y,3t)

|e−t
2Lu(y)|2 dγ(z)

γ(B(y, t))
dγ(y)

dt

t

≤
∫
Rn

∫ 1
2 ε∨min{ε,m(y)}

1
2 ε

∫
F

1B(y,3t)(z)|e−t
2Lu(y)|2 dγ(z)

γ(B(y, t))

dt

t
dγ(y)

≤
∫
F

∫ 1
2 ε∨min{ε,c1,3m(z)}

1
2 ε

∫
B(z,3t)

|e−t
2Lu(y)|2 dγ(y)

γ(B(y, t))

dt

t
dγ(z),

where in the last inequality we used that t ≤ m(y) and |y − z| < 3t imply t ≤
c1,3m(z) by Lemma 2.2(i).

Fix (z, t) ∈ F × ( 1
2ε,

1
2ε ∨ min{ε, c1,3m(z)}) and pick any z′ ∈ Rn such that

|z − z′| < t. For all y ∈ B(z, 3t) we have B(z, 3t) ⊆ B(z′, 4t) ⊆ B(y, 8t) and
therefore, by the doubling property for B(y, t) (noting that from t < c1,3m(z) and
|z− y| < 3t it follows that t < cc1,3,3m(y), so B(y, t) is admissible of class Bcc1,3,3

),∫
B(z,3t)

|e−t
2Lu(y)|2 dγ(y)

γ(B(y, t))
.

1

γ(B(z′, 4t))

∫
B(z′,4t)

|e−t
2Lu(y)|2 dγ(y)

≤ |T ∗(4,4c1,3)u(z)|2,

where the last inequality follows from (z′, t) ∈ Γ
(1,c1,3)
z (γ) ⊆ Γ

(4,4c1,3)
z (γ). Combin-

ing this with the previous inequality it follows that

I1 .
∫
F

∫ ε

1
2 ε

|T ∗(4,4c1,3)u(z)|2 dt dγ(z)

t
.
∫
F

|T ∗(4,4c1,3)u(z)|2 dγ(z).
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We proceed similarly for I2, using Lemma 4.1 to handle the gradient. With
τ(z) := c1,3m(z) we have, proceeding as in (4.5),

I2 .
∫
F

∫ 1
2 ε∨min{ε,τ(z)}

1
2 ε

∫
B(z,3t)

|t∇e−t
2Lu(y)|2 dγ(y)

γ(B(y, t))

dt

t
dγ(z)

(i)

.
∫
F∩{τ(z)≥ 1

2 ε}

∫ ε

1
2 ε

1

γ(B(z, 3ε))

∫
B(z,3ε)

|t∇e−t
2Lu(y)|2 dγ(y)

dt

t
dγ(z)

(ii)

.
∫
F∩{τ(z)≥ 1

2 ε}

7∑
l=2

∫ (l+1)ε2

8

lε2

8

1

γ(B(z, 3ε))

∫
B(z,3ε)

|∇e−sLu(y)|2 dγ(y) ds dγ(z).

In (i) we used the inclusions B(z, 3t) ⊆ B(z, 3ε) ⊆ B(z, 6t) ⊆ B(y, 9t) together
with the doubling property for B(y, t), and in (ii) we substituted t2 = s.

For each l ∈ {2, . . . , 7} we apply Lemma 4.1 with tl0 = 1
2 ( lε

2

8 + (l+1)ε2

8 ) = (2l+1)ε2

16 ,

cl = 12 and (rl)2 = ε2

16 . Together with the doubling property for B(z, ε) (noting
that B(z, ε) ∈ B2c1,3 in view of ε ≤ 2t ≤ 2c1,3m(z)), this gives

I2 .
∫
F∩{τ(z)≥ 1

2 ε}

7∑
l=2

∫ (2l+5)ε2

16

(2l−3)ε2

16

1 + rl|z|
(rl)2

× 1

γ(B(z, 6ε))

∫
B(z,6ε)

|e−sLu(y)|2 dγ(y) ds dγ(z).

Fix (z, s) ∈ (F ∩ {τ(z) ≥ 1
2ε}) × ( 1

16ε
2, 19

16ε
2) and pick any z′ ∈ Rn such that

|z − z′| <
√
s. Then from B(z, 6ε) ⊆ B(z, 24

√
s) ⊆ B(z′, 25

√
s) ⊆ B(z, 26

√
s) ⊆

B(z, 52ε) and the doubling property for the balls B(z, ε) ∈ B2c1,3 (note that ε ≤
2τ(z) = 2c1,3m(z)),

1

γ(B(z, 6ε))

∫
B(z,6ε)

|e−sLu(y)|2 dγ(y)

.
1

γ(B(z′, 25
√
s))

∫
B(z′,25

√
s)

|e−sLu(y)|2 dγ(y) ≤ |T ∗(25,100c1,3)u(z)|2,

where the last step follows from (z′,
√
s) ∈ Γ

(1,4c1,3)
z (γ) ⊆ Γ

(25,100c1,3)
z (γ) (indeed,

this follows from |z−z′| <
√
s < 2ε ≤ 4c1,3m(z)). Combining this with the previous

estimate we obtain

I2 .
∫
F

7∑
l=2

∫ (2l+5)ε2

16

(2l−3)ε2

16

1 + rl|z|
(rl)2

|T ∗(25,100c1,3)u(z)|2 ds dγ(z)

.
∫
F

(1 + ε|z|)|T ∗(25,100c1,3)u(z)|2 dγ(z),

where the last step follows from the fact that rl = 1
4ε.

We proceed with an estimate for I3. Let

G := {y ∈ Rn : 0 < d(y, F ∗) ≤ 2m(y)}.
Using Lemma 2.6, we cover G with a sequence of balls B(xk, rk) with xk ∈ G and
rk = 1

4d(xk, F
∗) for all k, and

(4.6)
∑
k≥1

γ(B(xk, d(xk, F
∗))) . γ(G) ≤ γ({F ∗).
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with implied constant independent of u and F . Note that B(xk, rk) ∈ B 1
2

for all

k.
If (y, t) ∈ B̃ε2, then y ∈ G and therefore y ∈ B(xk, rk) for some k, and 1

2d(y, F ∗) ≤
t ≤ d(y, F ∗). It follows that

(4.7)

I3 ≤
∑
k

∫
B(xk,rk)

∫ d(y,F∗)

1
2d(y,F∗)

|e−t
2Lu(y)|2 dt

t
dγ(y)

≤
∑
k

∫
B(xk,rk)

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

|e−t
2Lu(y)|2 dt

t
dγ(y)

≤
∑
k

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

∫
B(xk,t)

|e−t
2Lu(y)|2 dγ(y)

dt

t
.

In the second inequality we used that y ∈ B(xk, rk) implies |xk − y| < rk =
1
4d(xk, F

∗), and the third inequality follows from Fubini’s theorem and the inequal-

ity rk = 1
4d(xk, F

∗) ≤ 1
2d(y, F ∗) ≤ t.

Fix an index k and a number t ∈ ( 1
4d(xk, F

∗), 5
4d(xk, F

∗)). Since F ∗ is contained
in the closure of F we may pick zk ∈ F such that |xk − zk| < 2d(xk, F

∗). By
the choice of t this implies |xk − zk| < 8t. Since by assumption we have t ≤
5
4d(xk, F

∗) ≤ 5
2m(xk) (the second inequality being a consequence of xk ∈ G),

and since |xk − zk| < 8t, from Lemma 2.2 we conclude that t ≤ dm(zk) with

d := c 5
2 ,8

. We conclude that (xk, t) ∈ Γ
(8,8d)
zk (γ) (since by definition this means that

|xk − zk| ≤ 8t ≤ 8dm(zk)) and consequently, using the doubling property for the
admissible ball B(xk, t) ∈ B 5

2
,

1

γ(B(xk, t))

∫
B(xk,t)

|e−t
2Lu(y)|2 dγ(y)

.
1

γ(B(xk, 8t))

∫
B(xk,8t)

|e−t
2Lu(y)|2 dγ(y) ≤ |T ∗(8,8d)u(zk)|2.

Combining this with the previous inequalities we obtain

I3 .
(

sup
z∈F
|T ∗(8,8d)u(z)|2

)∑
k

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

γ(B(xk, t))
dt

t

.
(

sup
z∈F
|T ∗(8,8d)u(z)|2

)∑
k

γ(B(xk,
5
4d(xk, F

∗)))

.
(

sup
z∈F
|T ∗(8,8d)u(z)|2

)
γ({F ∗),

where the last step used (4.6) and the doubling property (recall that d(xk, F
∗) ≤

2m(xk), so the balls B(xk, d(xk, F
∗)) belong to B2).

For estimating I4, we let G and B(xk, rk) be as in the previous estimate. Pro-
ceeding as in the first two lines of (4.7) and applying the Fubini theorem, we get

I4 .
∑
k

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

∫
B(xk,rk)

|t∇e−t
2Lu(y)|2 dγ(y)

dt

t

=
1

2

∑
k

49∑
l=2

∫ 2l+2
64 d2(xk,F

∗)

2l
64d

2(xk,F∗)

∫
B(xk,rk)

|∇e−sLu(y)|2 dγ(y) ds.
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By Lemma 4.1, applied with t0 = 2l+1
64 d2(xk, F

∗), c = 2 and r = 1
8d(xk, F

∗), this
gives the estimate

I4 .
∑
k

49∑
l=2

∫ 2l+5
64 d2(xk,F

∗)

2l−3
64 d2(xk,F∗)

1 + d(xk, F
∗)|xk|

d2(xk, F ∗)

∫
B(xk,

1
2d(xk,F∗))

|e−sLu(y)|2 dγ(y) ds

≤
∑
k

49∑
l=2

∫ 2l+5
64 d2(xk,F

∗)

2l−3
64 d2(xk,F∗)

3

d2(xk, F ∗)

∫
B(xk,4

√
s)

|e−sLu(y)|2 dγ(y) ds,

where we used that d(xk, F
∗) ≤ 2m(xk) ≤ 2

|xk| and that s ≥ 1
64d

2(xk, F
∗) implies

1
2d(xk, F

∗) ≤ 4
√
s.

Fix k and pick an element zk ∈ F such that |xk − zk| < 2d(xk, F
∗). Then for all

s in the range of integration we have |xk − zk| < 16
√
s. Since

√
s ≤ 3

2d(xk, F
∗) ≤

3m(xk), from Lemma 2.2 we conclude that
√
s ≤ dm(zk) with d := c3,16. We

conclude that (xk, 4
√
s) ∈ Γ

(4,16d)
zk (γ). This gives

I4 .
(

sup
z∈F
|T ∗(4,16d)u(z)|2

)∑
k

1

d2(xk, F ∗)

∫ 103
64 d

2(xk,F
∗)

1
64d

2(xk,F∗)

γ(B(xk, 4
√
s) ds

.
(

sup
z∈F
|T ∗(4,16d)u(z)|2

)∑
k

γ(B(xk,
1
2

√
103d(xk, F

∗)))

.
(

sup
z∈F
|T ∗(4,16d)u(z)|2

)∑
k

γ(B(xk, d(xk, F
∗)))

.
(

sup
z∈F
|T ∗(4,16d)u(y)|2

)
γ({F ∗),

where the second last step used the doubling property for admissible balls (recalling
that B(xk, d(xk, F

∗)) ∈ B2) and the last one used (4.6).
To estimate I5, we proceed as we did for I1:

I5 .
∫
B̃ε3

∫
F∩B(y,3t)

|e−t
2Lu(y)|2 dγ(z)

γ(B(y, t))
dγ(y)

dt

t

≤
∫
Rn

∫ 2m(y)

m(y)

∫
F

1B(y,3t)(z)|e−t
2Lu(y)|2 dγ(z)

γ(B(y, t))

dt

t
dγ(y)

(i)

≤
∫
F

∫ c2,3m(z)

(1+3c2,3)−1m(z)

∫
B(z,3t)

|e−t
2Lu(y)|2 dγ(y)

γ(B(y, t))

dt

t
dγ(z)

.
∫
F

|T ∗(4,4c2,3)u(z)|2 dγ(z),

where in step (i) we used that m(y) ≤ t ≤ 2m(y) and |y−z| < 3t imply t ≤ c2,3m(z)
by Lemma 2.2(i), so |y − z| < 3c2,3m(z), and by an application of Lemma 2.2(ii)
the latter implies m(z) ≤ (1 + 3c2,3)m(y) ≤ (1 + 3c2,3)t.
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Finally we turn to I6, which is treated as I2. With c = c2,3 and d = (1+3c2,3)−1

as in the previous estimate, and using Lemma 4.1 as in the estimate for I2, we get

I6 .
∫
F

∫ cm(z)

dm(z)

1

γ(B(z, 3t))

∫
B(z,3t)

|t∇e−t
2Lu(y)|2 dγ(y)

dt

t
dγ(z)

=
1

2

∫
F

∫ c2m(z)2

d2m(z)2

1

γ(B(z, 3t))

∫
B(z,3t)

|∇e−sLu(y)|2 dγ(y) ds dγ(z)

.
∫
F

(1 +m(z)|z|)|T ∗(M1,M2)u(z)|2 dγ(z)

.
∫
F

|T ∗(M1,M2)u(z)|2 dγ(z),

for certain M1,M2 independent of u, F , and ε.

Combining all these estimates, we obtain six couples (M
(j)
1 ,M

(j)
2 ) (j = 1, ..., 6),

and, passing to the limit ε ↓ 0, the following estimate, valid for arbitrary closed
subsets F ⊆ Rn:

(4.8)

∫
F∗
|Su(x)|2 dγ(x)

.
6∑
j=1

((
sup
z∈F
|T ∗
M

(j)
1 ,M

(j)
2

u(z)|2
)
γ({F ∗) +

∫
F

|T ∗
M

(j)
1 ,M

(j)
2

u(z)|2 dγ(z)
)
,

with constants independent of F and u.
To finish the proof, we consider the distribution functions

γSu(σ) := γ
({
x ∈ Rn : Su(x) > σ

})
,

γT∗
(M

(j)
1 ,M

(j)
2 )

(σ) := γ
({
x ∈ Rn : T ∗

(M
(j)
1 ,M

(j)
2 )

u(x) > σ
})
, j = 1, . . . , 6.

We apply (4.8) to the set

F :=
{
z ∈ Rn : T ∗

(M
(j)
1 ,M

(j)
2 )

u(z) ≤ σ, j = 1, . . . , 6
}
,

and remark that {F ∗ ⊆ {z ∈ Rn : M∗c2,2(1{F )(z) > 1
2} = {̃F using the notation of

Lemma 3.2 (with a = c2,2 and C = 1
2 ). Indeed, if x ∈ Rn and r ∈ (0, c2,2m(x)] are

such that γ(B(x, r) ∩ F ) < 1
2γ(B(x, r)), then

sup
B(x,r)∈Bc2,2

γ(B(x, r) ∩ {F )

γ(B(x, r))
>

1

2
.

Lemma 3.2 gives us γ({F ∗) ≤ γ({̃F ) . γ({F ). Using this in combination with
the definition of F ,

1

σ2

(
sup
z∈F
|T ∗
M

(j)
1 ,M

(j)
2

u(z)|2
)
γ({F ∗) ≤ γ({F ∗) . γ({F ) ≤

6∑
k=1

γ
({
T

(M
(k)
1 ,M

(k)
2 )

> σ
})
.
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Hence, from (4.8) we infer

γSu(σ) ≤ γ(F ∗ ∩ {Su > σ}) + γ({F ∗)

.
1

σ2

∫
F∗
|Su(x)|2 dγ(x) + γ({F )

.
6∑
j=1

[
γT∗

(M
(j)
1 ,M

(j)
2 )

(σ) +
1

σ2

∫
F

|T ∗
(M

(j)
1 ,M

(j)
2 )

u(z)|2 dγ(z)
]

.
6∑
j=1

[
γT∗

(M
(j)
1 ,M

(j)
2 )

(σ) +
1

σ2

∫ σ

0

tγT∗
(M

(j)
1 ,M

(j)
2 )

(t) dt
]
.

Integrating over σ and noting that∫ ∞
0

1

σ2

∫ σ

0

tγT∗
(M

(j)
1 ,M

(j)
2 )

(t) dt dσ =

∫ ∞
0

tγT∗
(M

(j)
1 ,M

(j)
2 )

(t)

∫ ∞
t

1

σ2
dσ dt

=

∫ ∞
0

γT∗
(M

(j)
1 ,M

(j)
2 )

(t) dt =
∥∥T ∗

(M
(j)
1 ,M

(j)
2 )

∥∥
L1(γ)

,

we get, by Theorem 3.1,

‖Su‖L1(γ) .
6∑
j=1

∥∥T ∗
(M

(j)
1 ,M

(j)
2 )

u
∥∥
L1(γ)

.
6∑
j=1

∥∥T ∗(1,C
M

(j)
1 ,M

(j)
2

)u
∥∥
L1(γ)

≤ 6
∥∥T ∗(1,C)u

∥∥
L1(γ)

,

where C = max
j=1,...,6

C
M

(j)
1 ,M

(j)
2

. �
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