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Introduction

Stochastic partial differential equations (SPDEs) are used to model a wide
variety of phenomena in physics, population biology, finance, and other fields
of science. Mathematically, SPDEs are often formulated as stochastic ordinary
differential equations (SDEs) in an infinite dimensional Banach space E. The
solution to such an equation is a Banach space-valued stochastic process which
can be studied by means of probabilistic methods, in particular the theory of
stochastic integration in Banach spaces, and by analytic methods. This thesis
focusses on the latter, in particular on two specific approaches.

Firstly, associated with an SPDE is an evolution equation for functions
defined on E, known as the Kolmogorov backward equation, typically a linear
second order parabolic partial differential equation in infinitely many vari-
ables. Secondly, an SPDE induces a flow on the space of probability measures
on E, representing the time-evolution of the law of the underlying process,
and evolving according to a Kolmogorov forward (or Fokker-Planck) equation.
Properties of solutions to both types of equations will be studied in this thesis.

The above-mentioned equations describe various physical phenomena, such
as the erratic behaviour of particles immersed in a fluid and the statistics of
laser light. Furthermore, these equations arise in the analysis of interacting
particle systems, in the study of crystals in solid state theory, in models for
neuronal activity, and in the kinematic approach to turbulence.

Part I: Elliptic operators on Wiener spaces

In this part of the thesis we analyse the generators of transition semigroups
associated with a class of stochastic processes in a Banach space E. We start
with an informal discussion of the probabilistic interpretation of the transition
semigroup.

For x ∈ E we consider the linear stochastic Cauchy problem in E given by{
dX(t) = −AX(t) dt+ i dWH(t), t ≥ 0,
X(0) = x.
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Such an equation represents an autonomous dynamical system perturbed by
additive noise. The first term on the right hand side is a deterministic drift
term involving the generator −A of a C0-semigroup of bounded linear opera-
tors on E. The second term is a noise term containing a so-called cylindrical
Wiener process (WH(t))t≥0 associated with a Hilbert space H, and a bounded
operator i : H → E injecting the noise into the system. Under mild assump-
tions, the Cauchy problem admits a unique solution (Xx(t))t≥0, being an
E-valued stochastic process starting from X(0) = x and evolving in time
under the joint influence of the drift and the noise.

Given a time t ≥ 0, and a Borel set B ⊆ E, we are interested in the
probability that the process is contained in B at time t. In other words, we
would like to determine P(Xx(t) ∈ B) = E1B(Xx(t)). The latter expression
suggests that it is natural to take a more general functional approach and
compute

u(x, t) := (P (t)f)(x) := Ef(Xx(t)), x ∈ E, t ≥ 0,

for, say, f ∈ Bb(E), the space of bounded Borel functions on E. In this way
we obtain a collection of linear operators (P (t))t≥0 acting on Bb(E). Since the
solution to the SDE is a Markov process, these operators form a semigroup,
whose generator−L turns out to be a second order elliptic differential operator
acting on functions defined on E. Therefore u satisfies ∂tu(x, t) = −Lu(x, t),
a second order parabolic partial differential equation in infinitely many vari-
ables. Equations arising in this way are known as Kolmogorov (backward)
equations.

Part I of this thesis is concerned with the analysis of such operators L
in suitable Lp(µ)-spaces, where µ is an invariant measure for the underlying
stochastic process on E. Although it is relatively easy to give an explicit
formula for L on a suitable core of smooth functions, it is not easy to give a
precise description of the operator, since it is difficult to determine its domain
as an operator on Lp(µ). Solving this problem boils down to obtaining two-
sided Lp-estimates for the generator. The knowledge of the domain of the
operator is useful in the study of nonlinear perturbations of the process.

The simplest infinite dimensional example contained in this framework is
the classical Ornstein-Uhlenbeck operator, also known as the number operator
in quantum field theory, which is obtained by taking A = I in the stochastic
equation stated above. In this case the domain identification of L on Lp(µ) is
provided by the celebrated P.-A. Meyer inequalities, which are of fundamental
importance in the theory of Malliavin calculus. These inequalities allow to
define fractional Gaussian Sobolev spaces in an infinite dimensional setting,
and imply the boundedness of the Skorokhod stochastic integral.

The problem described above has been treated by various mathematicians
who obtained several results using very different methods. In particular the
problem has been solved in the finite dimensional case by Metafune, Prüss,
Rhandi, and Schnaubelt [125] using Dori-Venni theorems for sums of opera-
tors. The domain identification in the infinite-dimensional case under a sym-
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metry assumption is due to Chojnowska-Michalik and Goldys [32] (see also
Shigekawa [152]), who employed the Littlewood-Paley-Stein theory for sym-
metric diffusion semigroups. However, both methods fail to extend to the
infinite dimensional non-symmetric case.

In the first part of this thesis we present a simultaneous generalisation of
both results. We prove the domain identification in the infinite dimensional
non-symmetric case under the sole assumption of analyticity of the semigroup.

Part II: Wasserstein Theory for Infinite Dimensional Diffusions

Suppose that the above-mentioned SDE is considered with a random initial
condition X(0) = X0, where X0 is an E-valued random variable. For t ≥ 0, let
µt be the law of the solution X(t). In this way the stochastic process (X(t))t≥0

induces an evolution [0,∞) 3 t 7→ P ∗(t)µ := µt of probability measures on
E. The suggestive notation P ∗ is motivated by the fact that P ∗ is formally
the adjoint of the semigroup P considered in Part I, in the sense that for all
bounded continuous functions f : E → R,∫

E

P (t)f dµ =
∫
E

f d(P ∗(t)µ).

The measures (µt)t≥0 solve the Kolmogorov forward equation, also known as
the Fokker-Planck equation.

At the end of the 1990s a very appealing interpretation for Fokker-Planck
equations in a finite dimensional space has been given by Jordan, Kinderlehrer,
and Otto [85]. These authors demonstrated that certain Fokker-Planck equa-
tions can be regarded as gradient flows for entropy functionals on the space
of probability measures endowed with the L2-Wasserstein metric.

Although such an analysis is mathematically complicated due to the lack
of a linear structure on the L2-Wasserstein space, the gradient flow formu-
lation has many advantages. First of all, it provides new schemes for nu-
merical approximation. Furthermore, singular (Dirac) measures are naturally
included in the theory, and the ideas are applicable in very general, possibly
non-smooth metric spaces. Moreover, new proofs for several probabilistic and
functional inequalities (such as concentration of measure, logarithmic Sobolev,
and isoperimetric inequalities) can be obtained, often with sharp constants.
Finally, geometric properties of the underlying metric spaces can be effectively
studied using Wasserstein gradient flows.

In recent years, various works have been devoted to the implementation of
these ideas in an infinite dimensional setting, in particular by Ambrosio, Gigli,
Savaré, and Zambotti [4, 5] in Hilbert spaces, and by Fang, Shao, and Sturm
[59, 150] in the setting of an abstract Wiener space. In Part II of this thesis
we follow this line of argumentation, and present a Wasserstein framework
which is suitable for the study of Fokker-Planck equations associated with the
diffusions treated in Part I.
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Part III: Malliavin Calculus in Banach Spaces

The main results obtained in Part I are generalisations of results from the
theory of Malliavin calculus, a differential calculus for functions defined on
an infinite dimensional Banach space E endowed with a Gaussian measure.
Malliavin calculus can be applied to establish regularity results for the laws as-
sociated with solutions to stochastic (partial) differential equations. In several
applications it is useful to develop a theory of Malliavin calculus for functions
with values in an infinite dimensional space X. For instance, in [25] the theory
where X is a Hilbert space has been applied to problems in mathematical fi-
nance. Unfortunately, the straightforward extension to Banach spaces breaks
down.

Nevertheless, in Part III we demonstrate that a natural Banach space-
valued generalisation of Malliavin calculus can be obtained by a systematic
use of so-called γ-radonifying operators. This approach is inspired by recent
advances in vector-valued stochastic and harmonic analysis. As an application
we obtain a Clark-Ocone representation formula for random variables taking
values in a UMD Banach space.

We continue with a more detailed introduction to each of the three parts.

Part I

Ornstein-Uhlenbeck operators

Ornstein-Uhlenbeck operators appear as generators of transition semigroups
associated with linear stochastic differential equations on a Banach space E.
There exists a vast literature on these operators. Of particular relevance for
the following discussion are the papers by Chojnowska-Michalik and Goldys
[29, 31, 33], and Goldys and van Neerven [70].

Let −A be the generator of a C0-semigroup (S(t))t≥0 of bounded linear
operators on a Banach space E. Let H be a Hilbert space, let i ∈ L(H, E)
be a bounded linear operator, set Q := ii∗, and let WH be an H-cylindrical
Wiener process. For x ∈ E we consider the linear stochastic Cauchy problem{

dX(t) = −AX(t) dt+ i dWH(t), t ≥ 0,
X(0) = x.

(0.1)

Under mild assumptions this problem admits a unique solution, and the tran-
sition semigroup is given by

P (t)f(x) :=
∫
E

f(S(t)x+ y) dµt(y), x ∈ E, t ≥ 0, (0.2)

for all bounded Borel functions f : E → R. In this expression, µt denotes the
law of the solution to (0.1) with initial value x = 0. Assuming the existence of
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a weak limit µ∞ := limt→∞ µt, the semigroup P extends to a C0-semigroup
of positive contractions on Lp(µ∞) for 1 ≤ p < ∞. On a suitable core of
functions the generator −L is given by

Lf(x) = −1
2

traceD2
V f(x) + 〈x,A∗∇f(x)〉, x ∈ E, (0.3)

where ∇ denotes the Fréchet derivative and DV can be regarded as the deriva-
tive in the direction of H. Under an analyticity assumption, the operator L
can be written as a divergence form elliptic differential operator on the space
L2(µ∞). In fact,

L = D∗VBDV ,

where B is a bounded operator on H satisfying B + B∗ = I. We will study
these operators L in a more general framework.

Elliptic operators on Wiener spaces

Motivated by the considerations above we will set up an abstract framework
for the study of elliptic operators on Wiener spaces. We start with the follow-
ing data:

– (E,H, µ) is an (abstract) Wiener space, i.e., H is the reproducing kernel
Hilbert space of a Gaussian measure µ on a real separable Banach space
E;

– H is another real Hilbert space and V : D(V ) ⊆ H → H is a closed and
densely defined operator;

– B ∈ L(H) is a bounded operator which is coercive on R(V ), i.e., there
exists κ > 0 such that

[Bu, u] ≥ κ‖u‖2, u ∈ R(V ).

Here we use the notation D(T ) and R(T ) to denote the domain and the range
of an operator T. For operators acting on an Lp-space, we will write Dp(T )
and Rp(T ) respectively.

Associated with this abstract framework are the following operators:

A := V ∗BV on H, A := V V ∗B on H.

These operators can be lifted to function spaces by means of the gradient
DV := V D : Dp(DV ) ⊆ Lp(µ) → Lp(µ;H), where D denotes the Malliavin
derivative. This leads to the operators

L := D∗VBDV on L2(µ), L := DVD
∗
VB on L2(µ;H).

The operators −A and −L are the generators of analytic contraction semi-
groups denoted by S and P respectively. Furthermore, the operators −A and
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−L generate bounded analytic semigroups S and P , which are not necessar-
ily contractive. It can be shown that the semigroup P extends to an analytic
contraction semigroup on all spaces Lp(µ) for 1 < p <∞. Similarly, the semi-
group P can be extended to a bounded analytic semigroup on the closure of
the range of DV in Lp(µ;H).

Our first main result characterises the (two-sided) Lp-boundedness of the
Riesz transform

DV /
√
L :
√
Lf 7→ DV f

in terms of the four operators considered above. We write A h B to express
that there exists constants c, C > 0, not depending on A and B, such that
cA ≤ B ≤ CA. Similar conventions are used for the notation A . B and
A & B.

Theorem 0.1 (Domain of
√
L). Let 1 < p < ∞. The following assertions

are equivalent:

(1) Dp(
√
L) = Dp(DV ) with ‖

√
Lf‖p h ‖DV f‖p for f ∈ Dp(

√
L);

(2) L admits a bounded H∞-functional calculus on Rp(DV );
(3) D(

√
A) = D(V ) with ‖

√
Ah‖ h ‖V h‖ for h ∈ D(

√
A);

(4) A admits a bounded H∞-functional calculus on R(V ).

We actually prove a more refined version of this result involving neces-
sary and sufficient conditions for one-sided estimates for the Riesz transform.
An immediate consequence of the theorem is that (1) and (2) are actually
independent of p.

Theorem 0.1 contains the classical Meyer inequalities from Malliavin cal-
culus as a trivial consequence. In this case we have H = H and V = B = I,
and (3) is trivially satisfied.

Let us briefly comment on the equivalence of (1) and (3). It turns out that
the operator A can be identified with the restriction of L to the first chaos in
the Wiener-Itô decomposition, on which all Lp-norms are equivalent by the
Khintchine inequalities. In view of this observation, the implication (1) ⇒
(3) is trivial. In the opposite direction, as (3) is not automatically satisfied
[121], the same observation gives an obvious obstruction for the validity of
(1). However, the theorem asserts that this is in fact the only obstruction.

Using Theorem 0.1 we can also characterise the domain of L. Our second
main result reads as follows:

Theorem 0.2 (Domain of L). Let 1 < p < ∞, and let the equivalent con-
ditions of Theorem 0.1 be satisfied. Then we have equality of domains

Dp(L) = Dp(D2
V ) ∩ Dp(DA)

with equivalence of norms

‖f‖p + ‖Lf‖p h ‖f‖p + ‖DV f‖p + ‖D2
V f‖p + ‖DAf‖p.
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In this result, D2
V denotes the second derivative associated with the operator

V, andDA denotes the first derivative associated with A. Note that the domain
is the intersection of a “noise part” D(D2

V ) and a “drift part” D(DA), which
is natural in view of the expression (0.3).

The conditions of Theorem 0.1 are automatically satisfied in each of the
following two cases:

(1) B is selfadjoint. Under this assumption the results had already been
proved by Shigekawa [152] and Chojnowska-Michalik and Goldys [32].

(2) V has finite dimensional range. In this situation we recover the results by
Metafune, Prüss, Rhandi, and Schnaubelt [125].

The Ornstein-Uhlenbeck semigroup setting considered above fits naturally
into the abstract framework. In this case µ is the invariant measure µ∞, H is
its reproducing kernel Hilbert space, and H corresponds to the Hilbert space
H associated with the noise term in (0.1).

Each of the four semigroups appearing in the discussion above has a nat-
ural interpretation:

– S corresponds to the adjoint of the restriction of the drift semigroup S to
the reproducing kernel Hilbert space of µ∞.

– Similarly, S can be viewed as the adjoint of the restriction of S to the
noise Hilbert space H.

– P is the Ornstein-Uhlenbeck transition semigroup associated with (0.1).
– P can be interpreted as the corresponding Ornstein-Uhlenbeck semigroup

acting on vector fields.

The equivalence of (1) and (4) is of particular interest in this setting, since
it characterises the boundedness of the Riesz transform directly in terms of
the interplay between the drift S and the noise H, without referring to the
invariant measure.

The strategy of the proof

To prove Theorem 0.1 we will work in the setting of perturbed Hodge-Dirac
operators. This is an abstract framework constructed by McIntosh in the study
of the Kato square root problem.

Consider the perturbed Hodge-Dirac operators defined by

T =
[

0 V ∗B
V 0

]
on H ⊕H, Π =

[
0 D∗VB
DV 0

]
on Lp(µ)⊕ Lp(µ;H).

The operators A, A, L, and L can be reconstructed by taking squares:

T 2 =
[
V ∗BV 0

0 V V ∗B

]
=
[
A 0
0 A

]
, Π2 =

[
D∗VBDV 0

0 DVD
∗
VB

]
=
[
L 0
0 L

]
.
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To prove the boundedness of the Riesz transform DV /
√
L, we would like to

apply the following formal argument for f ∈ Dp(L):

‖DV f‖p = ‖Π(f, 0)‖p
. ‖Π/

√
Π2‖p ‖

√
Π2(f, 0)‖p = ‖Π/

√
Π2‖p ‖

√
Lf‖p.

Therefore, still arguing formally, we obtain the desired estimate as soon as we
can prove the boundedness of the operator Π/

√
Π2. Applying the formal rules

of functional calculus we may write Π/
√
Π2 = ( z√

z2
)(Π) = sgn(Π), where

sgn : C \ iR→ C is the bounded holomorphic function defined by

sgn(z) :=
{

1, Re z > 0,
−1, Re z < 0. (0.4)

Therefore, we conclude from this formal argument that in order to prove
the boundedness of the Riesz transform DV /

√
L, it suffices to show that the

operator sgn(Π) is bounded. In fact, we shall prove that Π has a bounded
H∞-functional calculus in the sense that ψ(Π) defines a bounded operator
for all bounded holomorphic functions ψ defined on a certain bisector in the
complex plane.

Let us emphasise that proving the boundedness of operators of the form
sgn(Π) is not an easy task in general, even if p = 2. In fact, in the re-
lated setting where DV is replaced by the Euclidean gradient, and B by a
matrix-valued multiplication operator with L∞-coefficients, the boundedness
of sgn(Π) is equivalent to the famous Kato square root conjecture in harmonic
analysis, which has been proved in [8].

It turns out that with some work the formal argument above can be made
rigorous, provided we prove that the operator Π is randomised bisectorial.
Loosely speaking, this means that the operator Π should satisfy appropriate
resolvent estimates which remain stable under randomisation. These so-called
R-boundedness results form the core of the proof of Theorem 0.1; they are
essentially equivalent to various Littlewood-Paley-Stein type inequalities. We
will prove the following result:

Theorem 0.3 (Gradient bounds). For 1 < p <∞ the following statements
hold.

(1) For all smooth cylindrical functions f : E → R and t > 0 we have, for
µ-almost all x ∈ E,

√
t‖DV P (t)f(x)‖ . (P (t)|f |2(x))1/2.

(2) The set {
√
tDV P (t) : t ≥ 0} is R-bounded in L(Lp(µ), Lp(µ;H)).

(3) For all f ∈ Lp(µ) we have∥∥∥(∫ ∞
0

‖
√
tDV P (t)f‖2 dt

t

)1/2∥∥∥
p
. ‖f‖p.
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The proof is based on Gaussian techniques such as the Mehler formula
and reproducing kernel Hilbert spaces. Once we have obtained this result, the
boundedness of the H∞-calculus can be proved in a relatively straightforward
manner.

Let us finally remark that we could have taken a different but equivalent
point of departure. Instead of starting with the space H and the operators V
andB, we could have taken an abstract Wiener space (E,H, µ) and an analytic
contraction C0-semigroup (e−tA)t≥0 on H. Then the semigroup (e−tL)t≥0 on
Lp(µ) can be constructed by second quantisation. In this context we obtain
a characterisation for the Lp-boundedness of the Riesz transform associated
with L on Lp(µ) in terms of the corresponding result for A on H.

Organisation

In Chapter 1 we collect some relevant background material concerning analysis
on Wiener spaces. Chapter 2 contains the basic theory of Ornstein-Uhlenbeck
operators. In Chapter 3 we summarise the Hilbertian theory of Hodge-Dirac
operators, which underlies the study of elliptic operators on Wiener spaces
presented in Chapter 4. The latter chapter is based on [107] and contains
most of the new results obtained in Part I of this thesis. In particular the
proofs of the main Theorems 0.1 and 0.2 can be found there. Chapter 5 is
an appendix containing a review of the main tools: randomised boundedness,
radonifying operators, and H∞-functional calculus.

Part II

This second part of the thesis is in a sense the dual of Part I. We will construct
a framework for the study of Fokker-Planck equations corresponding to (0.1)
as entropy gradient flows with respect to a suitable Wasserstein metric.

The idea of formulating diffusion equations as gradient flows with respect
to the Wasserstein metric goes back to the seminal paper by Jordan, Kinder-
lehrer and Otto [85]. Since then this approach has been very popular (see, e.g.,
[1, 26, 27, 37, 172]). A systematic theory of gradient flows in metric spaces
has been developed by Ambrosio, Gigli, and Savaré [4]. This theory has been
applied to Fokker-Planck equations in Hilbert spaces (see [4] and the paper
by Ambrosio, Savaré, and Zambotti [5]).

Closely related to our work are the papers by Fang, Shao and Sturm
[59, 150]. These authors construct a theory of gradient flows in Wasserstein
spaces over abstract Wiener spaces. In particular, they prove that the entropy
gradient flow of the Wiener measure is a solution to the Fokker-Planck equa-
tion associated with the classical Ornstein-Uhlenbeck operator. The philoso-
phy of these works is similar to [4, 5], but additional technical complications
arise due to the fact that the Wasserstein metric is defined in terms of the
Cameron-Martin distance, which behaves very irregularly on E.
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Adapting the approach of these works, we establish a framework which
also covers the more general Ornstein-Uhlenbeck setting considered in Part I.

Geometry of the Wasserstein space

We consider a Hilbert space H, a separable Banach space E and a continuous
embedding i : H ↪→ E. Let P(E) denote the collection of Borel probability
measures on E. For µ, ν ∈P(E) we define the Wasserstein distance by

WH(µ, ν) := inf
{(∫

E×E
|x− y|2H dΣ(x, y)

)1/2

: Σ ∈ Γ (µ, ν)
}
∈ [0,∞],

where Γ (µ, ν) denotes the collection of all Borel probability measures on the
product E × E having marginals µ and ν. Endowed with the Wasserstein
metric WH , P(E) is a complete separable pseudo-metric space (in the sense
that the WH attains the value +∞). The non-continuity of | · |H as a function
on E makes the analysis technically more involved than in the Euclidean or
Hilbertian case. Contrary to [59], we do not assume that H is the reproducing
kernel Hilbert space associated with a Gaussian measure on E.

We investigate the geometric structure of P(E). For µ ∈P(E) we set

THµ := {∇Hf : f ∈ C} ⊆ L2(µ;H),

where ∇H denotes the gradient in the direction of H, C is a class of smooth
cylindrical real-valued functions defined on E, and the closure is taken in
L2(µ;H). The space THµ is interpreted as the tangent space to P(E) at µ. We
show that to each WH -smooth curve (µt)t∈[0,1] ⊆P(E) corresponds a unique
measurable function Z : [0, 1]× E → R having the following properties:

(1) Zt ∈ THµt for a.e. t ≥ 0 and
∫ 1

0

∫
E
|Zt(x)|2H dµt(x) dt <∞;

(2) The continuity equation

∂tµt +∇H · (Ztµt) = 0

holds in the following distributional sense: for all α ∈ C∞c (0, 1) and all
smooth cylindrical functions f ∈ C,∫ 1

0

∫
E

(
α′(t)f(x) + α(t)[∇Hf(x), Zt(x)]H

)
dµt(x) dt = 0.

We will view (Zt)t∈[0,1] as the velocity field along the curve (µt)t∈[0,1]. These
objects allow to perform Riemannian-like computations (“Otto calculus”) in
the space P(E). Such a Riemannian structure on P(Rn) has been formally
introduced in [140] and rigorously implemented in [4] in a Hilbert space set-
ting. Our work follows the approach of [59], where the Wiener space case has
been considered.
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Gradient flows

A gradient flow associated with a smooth convex functional φ ∈ C2(Rn) is a
solution u ∈ C1(0,∞; Rn) to the equation ∂tu(t) = −∇φ(u(t)). Loosely speak-
ing, at each moment in time the solution moves in the direction of steepest
descent of the functional φ.

Clearly, the definition of a gradient flow refers to the differentiable struc-
ture of Rn. However, a theory of gradient flows in metric spaces (X, d) without
any differentiable structure has been developed by Ambrosio, Gigli, and Savaré
in [4]. These authors consider functionals φ : X → R∪ {∞} which are convex
along suitable curves in X, and consider a notion of a gradient flow which
only involves the metric d and the functional φ. More precisely, a locally ab-
solutely continuous mapping u : (0,∞)→ X is said to be a gradient flow for
a proper lower semicontinuous functional φ if there exists λ ∈ R such that for
any y ∈ D(φ) the evolution variational inequality (EVI)

1
2
∂td

2(u(t), y) +
λ

2
d2(u(t), y) ≤ φ(y)− φ(u(t)) (0.5)

holds for almost every t ∈ (0,∞). Under suitable convexity assumptions, ex-
istence and uniqueness of gradient flows has been proved in [4]. Moreover, the
theory has been applied to entropy functionals on the Wasserstein space over
a Hilbert space. We will study functionals and gradient flows in (P(E),WH)
based on this line of argumentation.

The Riemannian structure on the Wasserstein space can be used to intro-
duce the subdifferential ∂φ associated with a functional φ : P(E)→ R∪{∞}.
Combining this with the velocity fields along curves in P(E), which we al-
ready discussed above, we give a rigorous meaning to the Wasserstein gradient
flow equation

∂tµt ∈ −∂φ(µt), t ≥ 0. (0.6)

One of the main results asserts that under appropriate convexity assumptions
on φ, this differential geometric approach is equivalent to the metric approach
to gradient flows via the EVI (0.5).

As an example we let γ be a Gaussian measure on E and consider the
relative entropy functional defined by

Hγ : P(E)→ [0,+∞], Hγ(µ) :=
{∫

E
ρ log ρ dγ, µ� γ, µ = ργ

+∞, otherwise.

We show that these functionals are convex along generalised geodesics in the
sense of [4] if the reproducing kernel Hilbert space of γ is contained in H.

Application to infinite dimensional diffusions

In this section we connect the above-mentioned theory to the first part of the
thesis and apply the results to infinite dimensional diffusions.
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Under suitable assumptions we show that the relative entropy functional
Hµ∞ associated with the invariant measure µ∞ of the SDE (0.1) is generalised
displacement convex with respect to the Wasserstein distance induced by the
noise Hilbert spaceH. This result generalises the Wiener space result from [59]
and allows us to apply the abstract metric theory from [4], which guarantees
for each σ ∈ D(Hµ∞) the existence of a unique gradient flow (σt)t≥0 in P(E)
associated with the metric WH and the functional Hµ∞ , satisfying the initial
condition σ0 = σ.

Using the approach of [85] (see also [59] for the Wiener space setting) we
show in Theorem 10.17 that the measures (σt)t≥0 satisfy the Fokker-Planck
equation associated with the Ornstein-Uhlenbeck operator L in the following
distributional sense: for any test function α ∈ C∞c [0,∞) and any sufficiently
smooth function f ∈ D(L) we have

−
∫ ∞

0

α′(t)
∫
E

f(x) dσt(x) dt

+ 2
∫ ∞

0

α(t)
∫
E

Lf(x) dσt(x) dt = α(0)
∫
E

f(x) dσ(x).

This generalises the result from [59], where the classical Ornstein-Uhlenbeck
operator corresponding to A = I in (0.1) has been considered.

We believe that the theory described in this chapter can be used as a
framework for more general evolution equations in the space of probability
measures over infinite dimensional spaces.

Organisation

Part II of the thesis is based on [106]. In Chapter 6 we collect some background
results and study the basic properties of the Wasserstein space (P(E),WH).
Chapter 7 is concerned with the analysis of smooth paths in P(E) and their
velocity fields. Functionals and their subdifferentials are investigated in Chap-
ter 8, and in Chapter 9 we analyse the corresponding gradient flows on P(E).
Finally, in Chapter 10 we consider the relative entropy functionals associated
with Gaussian measures on E and connect the theory to Part I of this thesis.

Part III

The theory of Malliavin calculus [82, 138] has been initiated in the seven-
ties by Malliavin [111], who gave a probabilistic proof of Hörmander’s “sums
of squares”-theorem. The Malliavin calculus generalises in a natural way to
Hilbert space-valued random variables. We refer to [25] for a recent account
of this infinite dimensional setting with applications to mathematical finance.

In recent years many Hilbert space results in stochastic and harmonic
analysis have been transferred to a Banach space setting [81, 90]. Of partic-
ular relevance for this work is the theory of stochastic integration in Banach
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spaces developed by van Neerven, Veraar, and Weis [134, 135]. Inspired by
these developments we construct in Part III a theory of Malliavin calculus for
random variables taking values in a Banach space.

The focus in Chapter 11 is on the interplay between Malliavin calculus
and decoupling inequalities for vector-valued random variables. These decou-
pling inequalities underly the proofs of Theorems 11.5, 11.9 and 11.12. In
the opposite direction, we apply the theory developed here to give a new
proof of a known decoupling result in Theorem 11.24. Different aspects of
vector-valued Malliavin calculus have been considered by several authors in
[112, 115, 117, 153].

In Chapter 12 (see also [109]) the vector-valued Malliavin calculus is used
to construct a Skorokhod integral in so-called UMD Banach spaces which
extends the stochastic integral from [134]. This integral is used to obtain a
Clark-Ocone representation formula in UMD spaces. This result is new (see
[116]).

Banach space-valued Malliavin calculus

Let us briefly discuss some of the main results of this part of the thesis. Let
(Ω,F ,P) be a probability space, let H be a Hilbert space, and let E be a Ba-
nach space. We consider an isometry W : H → L2(Ω) onto a closed subspace
consisting of Gaussian random variables, and assume that F is the σ-field
generated by {W (h) : h ∈ H}. According to the classical Wiener-Itô de-
composition, L2(Ω,F ,P) admits an orthogonal decomposition into Gaussian
chaoses L2(Ω,F ,P) =

⊕
m≥0H

(m).Moreover, there exist canonical isometries
Φm from the symmetric Hilbert space tensor powers H s©m onto H(m).

We show in Theorem 11.5 that this result admits a natural Banach space-
valued generalisation. For this purpose we introduce higher order versions
of the space of γ-radonifying operators γ(H,E) ⊆ L(H,E). These spaces
γ s©m(H,E) consist of so-called symmetric γ-radonifying operators, which turn
out to be the natural vector-valued analogues of the symmetric Hilbert space
tensor powers in this setting. We prove that Φm extends to an Lp-isomorphism
between γ s©m(H,E) and the vector-valued Gaussian chaos H(m)(E) for 1 ≤
p <∞,

‖(Φm ⊗ I)T‖Lp(Ω;E) hm,p ‖T‖γ s©m(H,E), T ∈ γ s©m(H,E).

In Section 11.3 we consider the particular case where H = L2(M,µ) for
some σ-finite measure space (M,µ). Theorem 11.9 shows that the Wiener-
Itô isomorphism is given in this case by a multiple stochastic integral Im for
Banach space-valued functions, for which we prove two-sided estimates on the
Lp-norms. In fact, for any 1 ≤ p <∞ we obtain the estimates

‖ImF‖Lp(Ω;E) hm,p ‖F‖γ s©m(L2(M),E), F ∈ γ s©m(L2(M), E),
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which generalise the estimates for (single) Banach space-valued stochastic
integrals in [135].

The proofs of these results rely on known decoupling inequalities for so-
called tetrahedral and symmetric chaos. The idea to use decoupling in the
study of multiple stochastic integrals already appears in the pioneering work
on decoupling by McConnell and Taqqu [119, 120], Kwapień [96] and others.

In Section 11.4 we consider the Banach space-valued Malliavin derivative
D, which for 1 ≤ p <∞ acts as a closed operator

D : D1,p(Ω;E) ⊂ Lp(Ω;E)→ Lp(Ω; γ(H,E)),

where D1,p(Ω;E) denotes the E-valued Gaussian Sobolev space. The main
result of this section (Theorem 11.12) asserts that the restriction of the Malli-
avin derivative to each chaos is an Lp-isomorphism for 1 ≤ p <∞,

‖DF‖Lp(Ω;γ(H,E)) hp,m ‖F‖Lp(Ω;E), F ∈ H(m)(E),

a fact which is by no means obvious for general Banach spaces. The use of
decoupling in this context appears to be new. In UMD spaces this result is an
easy consequence of Pisier’s extension of Meyer’s inequalities to UMD Banach
spaces. These inequalities are considered in more detail in Section 11.5. We
discuss several of their consequences and obtain a version of Meyer’s multiplier
theorem in UMD spaces. We return to decoupling in Theorem 11.24 where
we present a new proof of a known decoupling result for Gaussian chaoses in
UMD spaces based on Meyer’s inequalities.

The Clark-Ocone formula

A classical result of Clark [34] and Ocone [139] asserts that if F = (Ft)t∈[0,T ]

is the augmented filtration generated by a Brownian motion (Wt)t∈[0,T ] on a
probability space (Ω,F ,P), then every FT -measurable Malliavin differentiable
random variable F ∈ D1,p(Ω), 1 < p <∞, admits a representation

F = E(F ) +
∫ T

0

E(DtF |Ft) dWt,

where Dt is the Malliavin derivative of F at time t. An extension to FT -
measurable random variables F ∈ D1,1(Ω) was given by Karatzas, Ocone,
and Li [91]. The Clark-Ocone formula is used in mathematical finance to
obtain explicit expressions for hedging strategies.

The aim of Chapter 12 is to extend this formula to the infinite-dimensional
setting using the theory of stochastic integration of L(H , E)-valued processes
with respect to H -cylindrical Brownian motions, developed in [134]. Here, H
is a separable Hilbert space and E is a UMD Banach space.

For this purpose we study the properties of the divergence operator, which
is a closed operator acting from Lp(Ω; γ(H,E)) to Lp(Ω;E). This operator



Introduction 15

is in duality with the Malliavin derivative. In the special case where H =
L2(0, T ; H ) for another Hilbert space H , the divergence operator turns out
to be a UMD space-valued Skorokhod integral, which extends the stochastic
integral of [134] to non-adapted processes.

The main result in Chapter 12 asserts that if E is a UMD Banach space,
1 ≤ p <∞, and F ∈ D1,p(Ω;E) is FT -measurable, then

F = E(F ) +
∫ T

0

PF(DF ) dWH ,

where D is the Malliavin derivative of F, WH is an H -cylindrical Wiener
process, and PF is the projection onto the F-adapted elements in a suitable
Banach space of Lp-stochastically integrable L(H , E)-valued processes.

Organisation

In Chapter 11, which is based on [105], we develop a Banach space-valued
theory of Malliavin calculus and study some of the fundamental objects, in
particular Wiener-Itô chaos, multiple stochastic integrals, and the Malliavin
derivative. Chapter 12 is concerned with the Skorokhod stochastic integral
and the Clark-Ocone representation formula. This chapter is based on [109].





Part I

Elliptic operators on Wiener spaces
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Analysis on Wiener Spaces

In this chapter we review some parts of the theory of analysis on Wiener
spaces. These are separable Banach spaces endowed with a Gaussian measure.
Before discussing the infinite dimensional framework, we start by recalling
some properties of Gaussian measures on R.

Gaussian measures on the real line

A Borel probability measure γ on R is called Gaussian if either γ = δ0, or
there exists q > 0 such that γ has a density dγ

dξ with respect to the Lebesgue
measure given by

dγ

dξ
=

1√
2πq

exp
(
− ξ

2

2q

)
, ξ ∈ R.

The number q is called the covariance of γ. In the case where γ = δ0 we say
that q = 0. We have ∫

R
ξ2 dµ(ξ) = q.

Lemma 1.1. A Borel probability measure µ on R is Gaussian with covariance
q ≥ 0 if and only if its Fourier transform is given by

µ̂(t) :=
∫

R
exp(−itξ) dγ(ξ) = exp

(
−qt

2

2

)
, t ∈ R. (1.1)

The standard Gaussian measure is the Gaussian measure with q = 1.

1.1 Gaussian measures on Banach spaces

• Throughout the rest of Chapter 1, we let E and F be real separable Banach
spaces.
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Let B(E) be the Borel σ-algebra of E. The collection of all Borel proba-
bility measures on E will be denoted by P(E). For µ ∈ P(E) and a Borel
mapping T : E → F, the push-forward measure T#µ ∈P(F ) is defined by

T#µ(B) := µ(T−1(B)), B ∈ B(F ).

Definition 1.2. A Borel probability measure µ on E is said to be Gaussian if
for any x∗ ∈ E∗ the measure x∗#µ is Gaussian on R.

The following celebrated result is known as Fernique’s Theorem [60].

Theorem 1.3. Let µ be a Gaussian measure on E. There exists a constant
β > 0 such that ∫

E

exp(β‖x‖2) dµ(x) <∞.

Proof. See [14, Theorem 2.8.5]. �

We will often use the much weaker result that µ has integrable p-moments,
i.e., IE ∈ Lp(µ;E) for all 1 ≤ p < ∞. In particular, the following definition
makes sense:

Definition 1.4. For a Gaussian measure µ on E the covariance operator Q ∈
L(E∗, E) is defined by the Bochner integral

Qx∗ :=
∫
E

〈x, x∗〉x dµ(x), x∗ ∈ E∗.

Note that if µ ∈ P(E) is Gaussian with covariance Q ∈ L(E∗, E), then for
each x∗ ∈ E∗ the covariance of the Gaussian measure x∗#µ ∈ P(R) equals
〈Qx∗, x∗〉.

In order to study covariance operators in more detail we introduce some
terminology. An operator R ∈ L(E∗, E) is said to be

• positive, if 〈Rx∗, x∗〉 ≥ 0 for any x∗ ∈ E∗;
• symmetric, if 〈Rx∗, y∗〉 = 〈Ry∗, x∗〉 for any x∗, y∗ ∈ E∗.

It is obvious that covariances of Gaussian measures are positive and sym-
metric. However, not every positive symmetric operator Q ∈ L(E∗, E) is the
covariance of a Gaussian measure, unless E is finite dimensional.

To prove that a positive symmetric operator Q ∈ L(E∗, E) is the covari-
ance of a Gaussian measure, the following result is often useful. Recall that a
subset M ⊆P(E) is said to be tight if for each ε > 0 there exists a compact
set K ⊆ E such that µ(K) > 1− ε for every µ ∈M.

Proposition 1.5 (Covariance domination). Let Q ∈ L(E∗, E) be the
covariance of a Gaussian measure µ on E. Suppose that R ⊆ L(E∗, E) is a



1.1 Gaussian measures on Banach spaces 21

collection of positive symmetric operators such that for some K ≥ 0 and all
R ∈ R we have

〈Rx∗, x∗〉 ≤ K2〈Qx∗, x∗〉, x∗ ∈ E∗.

Then each R ∈ R is the covariance of a Gaussian measure µR on E. Moreover,
the collection {µR : R ∈ R} is tight, and for all 1 ≤ p <∞ we have∫

E

|x|pE dµR(x) ≤ Kp

∫
E

|x|pE dµ(x).

Proof. See [130, Theorem 4.10]. �

For µ ∈P(E) we consider its Fourier transform µ̂ : E∗ → C defined by

µ̂(x∗) :=
∫
E

exp(−i〈x, x∗〉) dµ(x), x∗ ∈ E∗.

The following proposition characterises Gaussian measures in terms of their
Fourier transforms.

Proposition 1.6. For µ ∈P(E) the following assertions are equivalent:

(1) µ is Gaussian with covariance operator Q;
(2) There exists a positive symmetric operator Q ∈ L(E∗, E) such that the

Fourier transform of µ is given by

µ̂(x∗) = e−
1
2 〈Qx

∗,x∗〉, ∀x∗ ∈ E∗.

Proof. If µ is Gaussian with covariance operator Q, then∫
R
ξ2 d(x∗#µ)(ξ) =

∫
E

〈x, x∗〉2 dµ(x) = 〈Qx∗, x∗〉,

hence x∗#µ is Gaussian with covariance 〈Qx∗, x∗〉. Therefore (2) follows from
Lemma 1.1.

Conversely, (2) implies that for t ∈ R and x∗ ∈ E∗,

(̂x∗#µ)(t) =
∫

R
e−itξ d(x∗#µ)(ξ) =

∫
E

e−it〈x,x
∗〉 dµ(x) = e−

1
2 t

2〈Qx∗,x∗〉.

Therefore Lemma 1.1 implies that x∗#µ is Gaussian with covariance 〈Qx∗, x∗〉,
hence µ is Gaussian. Note that∫

E

〈x, x∗〉2 dµ(x) =
∫

R
ξ2 d(x∗#µ)(ξ) = 〈Qx∗, x∗〉,

hence by polarisation we obtain for y∗ ∈ E∗,∫
E

〈x, x∗〉〈x, y∗〉 dµ(x) = 〈Qx∗, y∗〉.

This implies that Q is the covariance of µ. �
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A useful consequence is the following result.

Lemma 1.7. Let µ be a Gaussian measure on E with covariance Q ∈
L(E∗, E). For all T ∈ L(E,F ) the measure T#µ is Gaussian on F with co-
variance TQT ∗.

Proof. For any x∗ ∈ E∗, Proposition 1.6 implies that

(̂T#µ)(x∗) =
∫
E

e−i〈x,x
∗〉 d(T#µ)(x) =

∫
E

e−i〈Tx,x
∗〉 dµ(x)

=
∫
E

e−i〈x,T
∗x∗〉 dµ(x) = 〈QT ∗x∗, T ∗x∗〉 = 〈TQT ∗x∗, x∗〉.

Therefore the result follows by another application of Proposition 1.6. �

1.2 Reproducing kernel Hilbert spaces

It turns out that each Gaussian measure on E comes with a canonical Hilbert
space, which plays a prominent role in the differential calculus on E. In this
section we will study these Hilbert spaces in a slightly more general setting
following the presentation in [130].

• Throughout this section we let Q ∈ L(E∗, E) be a positive symmetric
operator.

Consider the bilinear form [·, ·]HQ on R(Q) defined for x∗, y∗ ∈ E∗ by

[Qx∗, Qy∗]HQ := 〈Qx∗, y∗〉, x, y ∈ R(Q).

Note that this expression is well-defined. Indeed, if Qy∗ = Qỹ∗ for some
y∗, ỹ∗ ∈ E∗, then

〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 = 〈Qỹ∗, x∗〉 = 〈Qx∗, ỹ∗〉.

Lemma 1.8. The bilinear form [·, ·]HQ defines an inner product on R(Q).

Proof. Clearly, [·, ·]HQ is positive and symmetric (in the sense of bilinear
forms). It remains to show that [x, x]HQ > 0 for any non-zero x ∈ R(Q).
To show this, let x := Qx∗ for some x∗ ∈ E∗, and assume that [x, x]HQ = 0.
The Cauchy-Schwarz inequality implies that for any y∗ ∈ E∗,

〈Qx∗, y∗〉2 ≤ 〈Qx∗, x∗〉〈Qy∗, y∗〉 = 0,

thus x = 0. �

This leads to the following definition:
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Definition 1.9. The reproducing kernel Hilbert space (RKHS) associated
with Q is the completion of R(Q) with respect to the norm induced by the
inner product [·, ·]HQ .

It turns out that the RKHS is continuously embedded in E:

Proposition 1.10. The identity operator on R(Q) extends to a continuous
embedding iQ : HQ ↪→ E. Moreover, we have the factorisation

Q := iQi
∗
Q.

Proof. Let x∗ ∈ E∗.Taking the supremum over all y∗ in the unit ball of E∗,
we obtain

‖Qx∗‖E = sup
y∗
〈Qx∗, y∗〉 = sup

y∗
[Qx∗, Qy∗]HQ ≤ ‖Qx∗‖HQ sup

y∗
‖Qy∗‖HQ .

Combined with the fact that for any y∗ ∈ E∗,

‖Qy∗‖HQ = 〈Qy∗, y∗〉1/2 ≤ ‖Q‖1/2L(E∗,E)‖y
∗‖E∗ ,

it follows that

‖Qx∗‖E ≤ ‖Q‖1/2L(E∗,E) ‖Qx
∗‖HQ ,

which proves that the identity operator on R(Q) extends to a bounded oper-
ator iQ : HQ → E.

For x∗ ∈ E∗, let hx∗ be the element in HQ corresponding to Qx∗ in E,
i.e., iQhx∗ = Qx∗. For y∗ ∈ E∗ we have

[i∗Qx
∗, hy∗ ]HQ = 〈iQhy∗ , x∗〉 = 〈Qy∗, x∗〉 = [hx∗ , hy∗ ]HQ .

Since elements of the form hy∗ form a dense subset of HQ, it follows that
i∗Qx

∗ = hx∗ , hence Q = iQi
∗
Q.

To show that iQ is injective, we suppose that iQg = 0 for some g ∈ HQ.
For any y∗ ∈ E∗ we obtain

[g, hy∗ ]HQ = [g, i∗Qy
∗] = 〈iQg, y∗〉 = 0,

which implies that g = 0, thus iQ is injective. �

From now on we will explicitly distinguish between an element h ∈ HQ and
the corresponding element iQh ∈ E.

The following characterisation of HQ will be useful.

Lemma 1.11. We have equality of sets

iQ(HQ) = {x ∈ E : 〈x, y∗〉2 . 〈Qy∗, y∗〉 ∀y∗ ∈ E∗}.

Moreover, for any h ∈ HQ,

‖h‖HQ := inf{C ≥ 0 : 〈iQh, y∗〉2 ≤ C2〈Qy∗, y∗〉 ∀y∗ ∈ E∗}.
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Proof. Take h ∈ HQ. For any y∗ ∈ E∗ we have

〈iQh, y∗〉 = [h, i∗Qy
∗]HQ ≤ ‖h‖HQ‖i∗Qy∗‖HQ = ‖h‖HQ〈Q∗y∗, y∗〉1/2,

which shows that iQ(HQ) is contained in the set under consideration, together
with the desired lower bound for ‖h‖HQ . The corresponding upper bound
follows from the identity 〈Qy∗, y∗〉 = ‖i∗Qy∗‖2HQ and the fact that R(Q) is
dense in HQ.

To prove that iQ(HQ) contains the set in question, suppose that x ∈ E
satisfies 〈x, y∗〉2 ≤ C2〈Qy∗, y∗〉 for some C ≥ 0 and all y∗ ∈ E∗. Then the
mapping i∗Qy

∗ 7→ 〈x, y∗〉 extends to a bounded linear functional on HQ. By the
Riesz Representation Theorem there exists h ∈ H with ‖h‖HQ ≤ C such that
〈x, y∗〉 = [h, i∗Qy

∗]HQ = 〈iQh, y∗〉 for every y∗ ∈ E∗. It follows that x = iQh.
�

1.3 The Wiener-Itô chaos decomposition

• In this section we consider an (abstract) Wiener space, i.e., a triple
(E,H, µ), where µ is a Gaussian measure on E with covariance operator
Q ∈ L(E∗, E) and reproducing kernel Hilbert space H. We let i : H ↪→ E
denote the canonical embedding.

We will study an orthogonal decomposition of L2(µ), which is very useful in
the analysis on Wiener spaces. In the one dimensional case, a prominent role
is played by the Hermite polynomials (Hm)m≥0, which are recursively defined
for ξ ∈ R by

H0(ξ) = 1, H1(ξ) = ξ, (m+ 1)Hm+1(ξ) = ξHm(ξ)−Hm−1(ξ).

Their importance in this setting is due to the fact that(
m!1/2Hm

)
m≥0

is an orthonormal basis of L2(γ), where γ denotes the standard Gaussian
measure on R.

The starting point for an infinite dimensional generalisation of this orthog-
onal decomposition is the following observation:

Proposition 1.12. The mapping

φ : i∗x∗ 7→ 〈·, x∗〉, x∗ ∈ E∗,

extends to an isometry from H to L2(µ).

Proof. Observe that for every x∗ ∈ E∗,∫
E

〈x, x∗〉2 dµ = 〈Qx∗, x∗〉 = ‖i∗Qx∗‖2HQ .

This shows at once that φ is well-defined and isometric. �
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The isometry φ is known as the Paley-Wiener map. For h ∈ H we will
usually write φh := φ(h).

Remark 1.13. For h ∈ H, it can be shown that the function φh ∈ L2(µ) agrees
µ-a.e. with the µ-a.e. uniquely defined measurable extension of the bounded
linear functional φh : H → R defined by φh(g) := [g, h] (see [14, Theorem
2.10.11] or [61]).

Using the Paley-Wiener map, we will construct an orthogonal decomposi-
tion of L2(µ). Set H(≤0) := R1, and define H(≤m) inductively as the closed
linear span of H(≤(m−1)) together with all products of the form φh1 · . . . ·φhm
with h1, . . . , hm ∈ H. We then define H(0) := R1 and define H(m) as the
orthogonal complement of H(≤(m−1)) in H(≤m). The space H(m) is usually
referred to as the m-th Wiener-Itô chaos. Note that H(1) = φ(H). The or-
thogonal projection in L2(µ) onto H(m) will be denoted by Im.

The main result of this section expresses each Wiener-Itô chaos in terms
of Hermite polynomials, and gives a decomposition of L2(µ) as an infinite
orthogonal direct sum of chaoses.

Theorem 1.14. For each m ≥ 0 we have

H(m) := lin
{
Hm(φh) : h ∈ H, ‖h‖ = 1

}
. (1.2)

Moreover, we have the orthogonal Wiener-Itô decomposition

L2(µ) =
⊥⊕

m≥0

H(m). (1.3)

Proof. See [138, Theorem 1.1.1]. �

Some properties of Hermite polynomials in this setting are collected in the
following result.

Proposition 1.15. Let m,n ≥ 0, and let (ej)j≥1 be an orthonormal basis of
H. Then {∏

j≥0

αj !1/2Hαj (φej ) :
∑
j≥0

αj = m
}

is an orthonormal basis of H(m). Moreover, for g, h ∈ H with ‖g‖ = ‖h‖ = 1,∫
E

Hm(φg)Hn(φh) dµ = δmn
1
m!

[g, h]m, (1.4)

Im(φmh ) = m!Hm(φh). (1.5)

Proof. See [138, Lemma 1.1.1], [138, Proposition 1.1.1], and [84, Theorem
3.19]. Note that a different normalisation for the Hermite polynomials is used
in the latter reference. �
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Gaussian exponentials

A distinguished role in the analysis on Wiener spaces is played by the Gaussian
exponentials. These functions appear in the literature under various names
(Wick exponentials, coherent states, etc.) and are often useful in performing
explicit computations.

For h ∈ H, the Gaussian exponential Eh : E → R is (µ-a.e.) defined by

Eh(x) := exp
(
φh(x)− 1

2‖h‖
2
)
, x ∈ E. (1.6)

Proposition 1.16. Let 1 ≤ p <∞. For g, h ∈ H we have

Eh =
∞∑
m=0

1
m!
Im(φmh ) (1.7)

where the sum converges absolutely in Lp(µ). Moreover, the linear span of the
functions {Eh : h ∈ H} is dense in Lp(µ), and∫

E

EgEh dµ = exp
(
[g, h]

)
,

‖Eh‖p = exp
(
p−1
2 ‖h‖

2
)
.

Proof. See [84, Theorem 3.33, Corollary 3.37, 3.38 & 3.40]. �

Gaussian exponentials appear as Radon-Nikodým derivatives in the fol-
lowing celebrated Cameron-Martin theorem:

Theorem 1.17. For x ∈ E consider the shift operator T x : E → E defined
by T x(y) := x+ y for y ∈ E. Then T x#µ� µ if and only if x = iQh for some

h ∈ H. In this case the Radon-Nikodým derivative is given by dTx#µ

dµ = Eh.

Proof. See [14, Corollary 2.4.3]. �

Wiener-Itô chaos in Lp

It is a reformulation of the classical Khintchine inequalities that all Lp-norms
are equivalent when restricted to the first Wiener-Itô chaos H(1). The next
result expresses the remarkable fact that this equivalence holds true on every
chaos:

Theorem 1.18. For 1 ≤ p ≤ q <∞ the following assertions hold.

(1) The space
⋃
n≥0

⊕
0≤m≤nH

(m) is dense in Lp(µ).
(2) There exist constants Cp,q ≥ 1 such that for any m ≥ 0,

‖f‖p ≤ ‖f‖q ≤ Cmp,q‖f‖p, f ∈ H(m). (1.8)

(3) For 1 < p <∞ the operators Im extend to bounded projections on Lp(µ).

Proof. See [84, Theorem 5.10]. �

Let us remark that the operators (Im)m≥0 are not uniformly bounded on
Lp(µ) for p 6= 2.
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1.4 Second quantisation

• We continue with the notation from section 1.3.

To continue our treatment of the Wiener-Itô chaos decomposition we use the
language of (Hilbert space) tensor products.

For m ≥ 1 and i = 1, . . . ,m, let Hi be a real Hilbert space with orthonor-
mal basis (eik)k≥1. The Hilbert space tensor product H1⊗· · ·⊗Hm is defined as
the Hilbert space of all multilinear operators ξ : H1⊕· · ·⊕Hm → R satisfying

∞∑
i1,...,im=1

|ξ(ei1 , . . . , eim)|2 <∞,

endowed with the inner product defined for ξ, η ∈ H1 ⊗ · · · ⊗Hm by

[ξ, η] :=
∞∑

i1,...,im=1

ξ(ei1 , . . . , eim)η(ei1 , . . . , eim).

In particular, we can consider the tensor powers H⊗m for m ≥ 0 with the
convention that H⊗0 := R.

For gi ∈ Hi we define g1 ⊗ · · · ⊗ gm ∈ H1 ⊗ · · · ⊗Hm by

g1 ⊗ · · · ⊗ gm(h1, . . . , hm) := [g1, h1] · . . . · [gm, hm], hi ∈ Hi.

The m-fold symmetric tensor power H s©m is the range of the orthogonal
projection P s© ∈ L(H⊗m) defined by

P s©(h1 ⊗ · · · ⊗ hm) :=
1
m!

∑
σ∈Sm

hσ(1) ⊗ · · · ⊗ hσ(m),

where Sm denotes the permutation group on m elements. The (symmetric)
Fock space F (H) is defined as the Hilbert space direct sum

F (H) :=
⊕
m≥0

H s©m.

The following result, known as the Wiener-Itô isometry, establishes a
canonical identification of H s©m and H(m).

Theorem 1.19. The mapping

Φm :
1√
m!

∑
σ∈Sm

hσ(1) ⊗ · · · ⊗ hσ(m) 7→ Im(φh1 · . . . · φhm).

extends to a isometry from H s©m onto H(m). Consequently, the mapping

Φ :=
∞⊕
m=0

Φm : F (H)→ L2(µ)

is an isometric isomorphism.
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Proof. See [84, Theorem 4.1]. �

The Wiener-Itô isometry gives a natural way to lift contractions in L(H)
to L(L2(µ)):

Definition 1.20. Let T ∈ L(H).

(1) The operator Fm(T ) ∈ L(H s©m) is defined by F0(T )1 := 1, and for m ≥ 1
and h1, . . . , hm ∈ H by

Fm(T )
∑
σ∈Sm

hσ(1) ⊗ · · · ⊗ hσ(m) :=
∑
σ∈Sm

Thσ(1) ⊗ · · · ⊗ Thσ(m).

(2) The operator Γm(T ) ∈ L(H(m)) is defined by

Γm(T ) := Φm ◦Fm(T ) ◦ Φ−1
m .

It is easy to see that ‖Γm(T )‖L(H(m)) = ‖T‖mL(H). Consequently, the following
definition makes sense.

Definition 1.21. Let T ∈ L(H) be contractive, i.e., ‖T‖L(H) ≤ 1. The oper-
ators F (T ) ∈ L(F (H)) and Γ (T ) ∈ L(L2(µ)) are defined by

F (T ) :=
⊕
m≥0

Fm(T ), Γ (T ) :=
⊕
m≥0

Γm(T ).

The operator Γ (T ) is called the second quantisation of T .

It is immediate from Theorem 1.19 that second quantised operators are
contractions on L2(µ). The next result shows that much more is true:

Theorem 1.22. Let 1 ≤ p ≤ ∞ and let T, T1, T2 ∈ L(H) be contractive.

(1) Γ (T ) extends to a positive operator on Lp(µ) satisfying ‖Γ (T )‖L(Lp(µ)) =
1 and ∫

E

Γ (T )f dµ =
∫
E

f dµ, f ∈ Lp(µ). (1.9)

(2) As operators on Lp(µ) the following identities hold:

Γ (I) = I, Γ (T1T2) = Γ (T1)Γ (T2), (Γ (T ))∗ = Γ (T ∗). (1.10)

(3) For all h, h1, . . . , hm ∈ H we have

Γ (T )Im(φh1 · . . . · φhm) = Im(φTh1 · . . . · φThm), (1.11)
Γ (T )Eh = ETh. (1.12)

(4) Mehler’s formula holds: if f = ϕ(φh1 , . . . , φhn) with ϕ ∈ Cb(Rn) and
h1, . . . , hn ∈ H, then for µ-almost all x ∈ E we have

Γ (T )f(x) =
∫
E

ϕ
(
φTh1(x) + φ√I−T∗Th1

(y), . . .

. . . , φThn(x) + φ√I−T∗Thn(y)
)
dµ(y).

(1.13)

Proof. See [84, Example 4.8, Theorem 4.12] and [155]. �
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Complex second quantisation

By complexification, the Wiener-Itô decomposition extends to an isometry be-
tween the complex symmetric Fock space Γ (HC) :=

⊕
m≥0H

s©m
C and L2

C(µ).
By mimicking the real definitions, for a contraction T ∈ L(HC) it is possible
to define the complex second quantisation Γ (T ) as a contraction on L2

C(µ).
However, in general Γ (T ) does not extend to a bounded operator on LpC(µ)
for p 6= 2. In this thesis there are only very few places where we deal with
complex second quantisation.

The following lemmas will be useful in the sequel. The imaginary unit i
appearing below should not be confused with the embedding from H into E.

Lemma 1.23. For 1 ≤ p < ∞ and h, g ∈ H consider the complex Gaussian
exponential Eh+ig ∈ L2

C(µ) defined by

Eh+ig := exp
(
φh+ig −

1
2
(
‖h‖2 + 2i[h, g] + ‖g‖2

))
.

The following identity holds:

‖Eh+ig‖p = exp
(p− 1

2
‖h‖2 +

1
2
‖g‖2

)
.

Proof. See [84, Corollary 3.38]. �

Lemma 1.24. Let 1 < p < ∞, and let P ∈ L(LpC(µ)) be such that P |
H

(m)
C

=
Γm(T ) for some T ∈ L(HC). Then ‖T‖L(HC) ≤ 1.

Proof. Suppose that ‖P‖L(LpC(µ)) = ek for some k ∈ R. As a consequence of
the complexified version of (1.7), it follows that PEh = ETh for each h ∈ HC.
Therefore, Lemma 1.23 implies that

p− 1
2
‖Re Th‖2 +

1
2
‖Im Th‖2 ≤ k +

p− 1
2
‖Re h‖2 +

1
2
‖Im h‖2. (1.14)

Replacing h by αh for α > 0, multiplying (1.14) by 2
α2 , and passing to the

limit α→∞, we arrive at

(p− 1)‖Re Th‖2 + ‖Im Th‖2 ≤ (p− 1)‖Re h‖2 + ‖Im h‖2.

Applying this estimate to ih we obtain

(p− 1)‖Im Th‖2 + ‖Re Th‖2 ≤ (p− 1)‖Im h‖2 + ‖Re h‖2.

Adding the latter inequalities, we conclude that ‖T‖L(HC) ≤ 1. �
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Second quantisation of semigroups

We return to the real setting and turn our attention to second quantisation
of semigroups of operators.

Proposition 1.25. Let (T (t))t≥0 be a C0-semigroup of contractions on H,
and set P (t) := Γ (T (t)) for t ≥ 0. For 1 ≤ p < ∞ the operators (P (t))t≥0

form a C0-semigroup of positive contractions on Lp(µ). Moreover, we have
‖P (t)‖L(L∞(µ)) ≤ 1 and∫

E

P (t)f dµ =
∫
E

f dµ, f ∈ Lp(µ).

Proof. Everything follows from Theorem 1.22 except for the strong continuity.
Note that for each m ≥ 0, the mapping h → Hm(φh) is continuous from H
to Lp(µ). Therefore, for each h ∈ H with ‖h‖ = 1, we obtain from (1.5) and
(1.11),

P (t)Hm(φh) = ‖S(t)h‖mHm(φS(t)h/‖S(t)h‖)→ Hm(φh), as t ↓ 0.

Since these elements are dense in Lp(µ) by Theorems 1.14 and 1.18, the strong
continuity follows. �

Our next aim is to study analyticity of second quantised semigroups. We
emphasise that analytic contraction C0-semigroups are required to be con-
tractive on a sector in the complex plane (see also Definition 5.44) and not
only on the positive real axis. We will prove the following result from [68]:

Theorem 1.26. Let (T (t))t≥0 be a C0-semigroup of contractions on H, and
set P (t) := Γ (T (t)) for t ≥ 0. For 1 < p < ∞ the following assertions are
equivalent:

(1) P extends to an analytic C0-semigroup on Lp(µ);
(2) P extends to an analytic contraction C0-semigroup on Lp(µ);
(3) T extends to an analytic contraction C0-semigroup on H.

If these equivalent conditions are fulfilled, we have P (z) = Γ (T (z)) for any z
in the sector of analyticity of P.

The proof of this result makes use of the following sectorial version of the
Stein Interpolation Theorem [156].

Lemma 1.27. Let 1 ≤ p0, p1 ≤ ∞ and 0 ≤ ω0 < ω1 < π. Set Σ+
ω0,ω1

:=
Σω1 \Σω0 , and for 0 < t < 1,

1
pt

:=
1− t
p0

+
t

p1
, ωt := (1− t)ω0 + tω1.

Consider a collection of operators
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N(z) : Lp0(µ) ∩ Lp1(µ)→ Lp0(µ) + Lp1(µ), z ∈ Σ+
ω0,ω1 ,

and suppose that for each f ∈ Lp0(µ) ∩ Lp1(µ), the mapping z → N(z)f is
continuous on Σ+

ω0,ω1 and analytic on Σ+
ω0,ω1

. If, for i = 0, 1,

‖N(z)‖L(Lpi (µ)) ≤ Ci, | arg z| = ωi,

then, for each 0 ≤ t ≤ 1,

‖N(z)‖L(Lpt (µ)) ≤ C1−t
0 Ct1, | arg z| = ωt.

Proof. See [94, Lemma 5.8]. �

Proof (of Theorem 1.26). (2)⇒ (1) is trivial.
(1) ⇒ (3): Let (P (z))z∈Σ+

ω
be an analytic extension of P for some ω ∈

(0, 1
2π). For f ∈ H(m)

C and g ∈ H(n)
C we have

∫
E
fP (t)g dµ = 0 for any m 6= n

and t ≥ 0. By the uniqueness of the analytic extension we have
∫
E
fP (z)g dµ =

0 for any z ∈ Σ+
ω . It follows that P (z) maps H(m)

C into itself for any m ≥ 0.
In particular, for m = 1 we conclude that there exists an analytic extension
(T (z))z∈Σ+

ω
of T. Using the fact that P (t) = Γ (T (t)) and the uniqueness of

the analytic extension once more, we find that P (z)|
H

(m)
C

= Γm(T ) for every
m ≥ 0. Lemma 1.24 implies that ‖T (z)‖L(HC) ≤ 1, which completes the proof.

(3)⇒ (2): Let ω ∈ (0, 1
2π) be such that T (te±iω) is contractive on HC for

all t ≥ 0. It follows that ‖P (te±iω)‖L(L2
C(µ)) ≤ 1.

Suppose that p > 2 and take p′ > p, (resp. suppose that p < 2 and take
1 < p′ < p). Since ‖P (t)‖L(Lp′ (µ)) ≤ 1 for t ≥ 0, Lemma 1.27 implies that
P (z) is contractive on Lp(µ) for every z ∈ Σ+

ω . This proves (2).
The final assertion has been proved in the course of the proof of (1)⇒ (3).

�

1.5 Differentiation in Wiener spaces

• We continue with the notation from section 1.3.

An abstract Wiener space comes with a nice differential structure. There
is a natural gradient, the Malliavin derivative, which differentiates functions
defined on E in the direction of the reproducing kernel Hilbert space H.
However, in applications to stochastic differential equations one is naturally
led to consider gradients in the direction of different Hilbertian subspaces
H ↪→ E. The study of such gradients is the topic of this section. The first step
is to define a gradient on a suitable core of functions.
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Cylindrical functions

When working with functions on an infinite dimensional space, its is often
useful to approximate them by functions which only depend on finitely many
“coordinates”. These functions are called cylindrical.

When H0 is a linear subspace of H and k ∈ N ∪ {∞}, we let FCkb (E;H0)
denote the vector space of all (µ-almost everywhere defined) functions f :
E → R of the form

f(x) := ϕ(φh1(x), . . . , φhn(x)) (1.15)

with n ≥ 1, ϕ ∈ Ckb (Rn), and h1, . . . , hn ∈ H0. Here Ckb (Rn) is the space
consisting of all bounded continuous functions having bounded continuous
derivatives up to order k. In the case that H0 = H, we simply write FCkb (E).

The space FP(E;H0) is defined by replacing Ckb (Rn) in the definition of
FCkb (E;H0) by the collection of all polynomials.

Lemma 1.28. Let H0 ⊆ H be a dense subspace. For 1 ≤ p < ∞ the spaces
FP(E;H0) and FC∞b (E;H0) are dense in Lp(µ).

Proof. Theorem 1.18 and the density of H0 in H imply that FP(E;H0) is
dense in Lp(µ). The density of FC∞b (E;H0) follows from a straightforward
approximation argument. �

Directional gradients

Now we are in a position to study gradients of functions defined on E.

• In the remainder of this section we consider a real separable Hilbert space
H and a densely defined operator V : D(V ) ⊆ H → H.

Definition 1.29. For f ∈ FC1
b(E; D(V )) of the form (1.15), the gradient “in

the direction of V ” is the function DV f : E → H defined by

DV f(x) :=
n∑
j=1

∂jϕ(φh1(x), . . . , φhn(x))⊗ V hj ,

for µ-a.e. x in E.

Remark 1.30. The classical Malliavin derivative corresponds to the special
case H = H and V = I.

In order to define Sobolev spaces associated with the gradient DV , we have
to show that the operator

DV : FC1
b(E; D(V )) ⊆ Lp(µ)→ Lp(µ;H)

is closable.
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First we recall the definition of this concept. Let X,Y be Banach spaces.
An operator A : D(A) ⊆ X → Y is said to be closable if there exists a
closed operator A : D(A) ⊆ X → Y satisfying A ⊆ A. The following useful
characterisation of closability can be found in many textbooks on functional
analysis.

Lemma 1.31. For a densely defined operator A : D(A) ⊆ X → Y the follow-
ing assertions are equivalent:

(1) A is closable;
(2) D(A∗) is weak∗-dense in Y ∗;
(3) If (xn)n≥1 ⊆ X and y ∈ Y satisfy xn → 0 and Axn → y, then y = 0.

In order to prove that DV is closable, we will use the following lemma.

Lemma 1.32. Let 1 < p <∞. For all f ∈ FC1
b(E; D(V )) and u ∈ D(V ∗) we

have f ⊗ u ∈ Dp′(D∗V ) and

D∗V (f ⊗ u) = fφV ∗u − [DV f, u],

where D∗V denotes the adjoint of the operator DV : FC1
b(E; D(V )) ⊆ Lp(µ)→

Lp(µ;H).

Proof. Let g ∈ FC1
b(E; D(V )). Using the Gram-Schmidt algorithm we can

find an orthonormal basis (hj)j≥1 of H consisting of elements from D(V ),
such that f and g can be written as

f = ϕ(φh1 , . . . , φhn), g = ψ(φh1 , . . . , φhn),

for suitable n ≥ 1 and ϕ,ψ ∈ C1
b(Rn). Let γn be the standard Gaussian

measure on Rn. Using integration by parts we obtain∫
E

[f ⊗ u,DV g] dµ =
n∑
j=1

∫
E

(ϕ · ∂jψ)(φh1 , . . . , φhn)[u, V hj ] dµ

=
n∑
j=1

[V ∗u, hj ]
∫

Rn
ϕ(ξ)∂jψ(ξ) dγn(ξ)

=
n∑
j=1

[V ∗u, hj ]
∫

Rn

(
ξjϕ(ξ)− ∂jϕ(ξ)

)
ψ(ξ) dγn(ξ)

=
n∑
j=1

[V ∗u, hj ]
∫
E

(
φhjϕ(φh1 , . . . , φhn)

− ∂jϕ(φh1 , . . . , φhn)
)
ψ(φh1 , . . . , φhn) dµ,

and therefore
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E

[f ⊗ u,DV g] dµ =
n∑
j=1

[V ∗u, hj ]
∫
E

(
φhjf − ∂jϕ(φh1 , . . . , φhn)

)
g dµ

=
∫
E

(
φ∑n

j=1[V
∗u,hj ]hjf − [DV f, u]H

)
g dµ

=
∫
E

(
φV ∗uf − [DV f, u]H

)
g dµ.

In the final step we used the fact that for k > n,∫
E

φhkfg dµ =
∫

Rk
ξkϕ(ξ1, . . . , ξn)ψ(ξ1, . . . , ξn) dγk(ξ) = 0.

This proves the desired result. �

The following result characterises Lp-closability of DV in terms of the
operator V.

Theorem 1.33. Let 1 < p <∞. The operator DV defined on FC1
b(E,D(V ))

is closable as an operator from Lp(µ) into Lp(µ;H) if and only if V is closable.

Proof. Suppose that V is closable. Then D(V ∗) is weak∗-dense, hence weakly
in H. Since weak and strong closures of convex sets coincide, D(V ∗) is norm
dense in H, and therefore FC1

b(E; D(V ))⊗D(V ∗) is dense in Lp
′
(µ;H). Con-

sequently, Lemma 1.32 implies that Dp′(D∗V ) is dense in Lp
′
(µ;H), hence DV

is closable as an operator from Lp(µ) into Lp(µ;H) by Lemma 1.31.
Conversely, let (hn)n≥1 ⊆ D(V ) and u ∈ H be such that hn → 0 in H and

V hn → u in H. We have to show that u = 0. Proposition 1.12 and Theorem
1.18 imply that φhn → 0 in Lp(µ). Moreover, DV φhn = 1⊗ V hn → 1⊗ u in
Lp(µ;H). Since DV is closable, it follows from Lemma 1.31 that u = 0. �

If V is closable, we will denote the closure of DV by DV again. We will
sometimes write

W 1,p
V (µ) := Dp(DV ).

For later use we will state two simple lemmas.

Lemma 1.34. Let 1 < p < ∞ and suppose that V is closable. For h ∈ D(V )
we have Eh ∈ Dp(DV ) and

DV Eh = Eh ⊗ V h. (1.16)

Proof. This follows from the representation Eh(x) := exp(φh(x)− 1
2‖h‖

2) and
a routine approximation argument using the closedness of DV . �

Lemma 1.35. Let 1 < p <∞ and suppose that V is closable. Then the space
FP(E; D(V )) is a core for Dp(DV ).
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Proof. An easy approximation argument shows that FP(E; D(V )) ⊆ Dp(DV ).
Thus it suffices to approximate elements of FC1

b(E; D(V )) in the graph norm
of Dp(DV ) with elements of FP(E; D(V )). Let f ∈ FC1

b(E; D(V )) be of the
form f = ϕ(φh1 , . . . , φhn) with hj ∈ D(V ) for j = 1, . . . , n and ϕ ∈ C1

b(Rn).
By a Gram-Schmidt argument we may assume that the elements h1, . . . , hn
are orthonormal in H. Taking Borel versions of the functions x 7→ φhj (x), the
image measure of µ under the transformation x 7→ (φh1(x), . . . .φhn(x)) is the
standard Gaussian measure γn on Rn.

This reduces the problem to finding polynomials pk in n variables such
that pk → ϕ in Lp(γn) and ∇pk → ∇ϕ in Lp(γn; Rn). It is a classical fact
that such polynomials exist. �

Higher order derivatives

The closability of the gradient DV allows to define higher order Sobolev spaces
recursively. For notational simplicity we restrict ourselves to derivatives of
second order. Assuming that V is closed, we will first differentiate H-valued
functions. We consider the operator DV ⊗ I, initially defined on the algebraic
tensor product Dp(DV )⊗H, which we regard as a dense subspace of Lp(µ;H).

Proposition 1.36. Let 1 < p <∞ and suppose that V is closed. The operator
DV ⊗ I is closable as an operator from Lp(µ;H) to Lp(µ;H⊗2).

Proof. Take (Fn)n≥1 ⊆ Dp(DV )⊗H and G ∈ Lp(µ;H⊗2) such that

Fn → 0 in Lp(µ;H), (DV ⊗ I)Fn → G in Lp(µ;H⊗2).

For all u ∈ H we have [Fn, u]H → 0 in Lp(µ) and DV [Fn, u]H → [G, u]H .
Since DV is closed, it follows that [G, u]H = 0 for all u ∈ H, hence G = 0. �

We will denote the closure of DV ⊗ I by

D
(1)
V : Dp(D

(1)
V ) ⊆ Lp(µ;H)→ Lp(µ;H⊗2).

Sometimes we will write

W 1,p
V (µ;H) := Dp(D

(1)
V ).

Now we are in a position to introduce higher order derivatives. We define
the operator D2

V : Dp(D2
V ) ⊆W 1,p

V (µ)→ Lp(µ;H⊗2) by

Dp(D2
V ) := {f ∈W 1,p

V (µ) : DV f ∈W 1,p
V (µ;H)}, D2

V := D
(1)
V ◦DV .

Proposition 1.37. Let 1 < p < ∞ and suppose that V is closed. Then the
operator D2

V is closed as an operator from W 1,p
V (µ) to Lp(µ;H⊗2).
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Proof. Let fn ∈ Dp(D2
V ) be such that

fn → f in W 1,p
V (µ), D2

V fn → G in Lp(µ;H⊗2)

for some f ∈ Dp(DV ) and G ∈ Lp(µ;H⊗2). In particular, DV fn → DV f in
Lp(µ;H). Since D(1)

V is closed, it follows that DV f ∈ D(D(1)
V ) and D(1)

V f = G,
hence f ∈ D(D2

V ) and D2
V f = G. �

We will use the notation

W 2,p
V (µ) := Dp(D2

V ).

1.6 Notes

The standard reference on Gaussian measures on infinite dimensional spaces
is the monograph by Bogachev [14]. Pioneering work on Gaussian measures in
infinite dimensions is due to Segal [149]). Gross [72] introduced the notion of an
abstract Wiener space. In his approach the starting point is the Hilbert space
H. Abstract Wiener spaces are modeled after the classical Wiener space, where
E = C0[0,∞) is the Banach space of all continuous functions x on [0,∞) with
x(0) = 0, and H = W 1,2

0 (0,∞) consists of all absolutely continuous functions
h on [0,∞) satisfying

∫∞
0
|h′(t)|2 dt < ∞, endowed with the inner product

[g, h]H :=
∫∞
0
g′(t)h′(t) dt. The associated Gaussian measure on C0[0,∞) is

the law of a Brownian motion.
With minor changes the theory presented in this chapter carries over to a

slightly more general setting without any reference to a Banach space. Here,
the starting point is a Hilbert space H and a probability space (Ω,F ,P)
which are related by means of an isonormal Gaussian process, i.e., an isometry
W ∈ L(H,L2(P)). The abstract Wiener space framework is obtained by taking
(Ω,P) = (E,µ), H is the RKHS of µ, and W = φ.

The chaos decomposition of L2(µ) is due to Wiener [171]. If H is an L2-
space, then the isomorphisms Φm are multiple stochastic integrals in the sense
of Itô [83].

Non-commutative analogues of abstract Wiener spaces arise in fermionic
analysis, see, e.g., [73, 23], and free probability theory e.g., [167]. The corre-
sponding Lp-spaces are non-commutative. There is also a theory of complex
abstract Wiener spaces [151, 159].

Second quantised operators appear in quantum field theory. See the mono-
graph by Simon [155]. More on the mathematical aspects can be found in the
book by Janson [84].

The closability of the Malliavin derivative DI is a basic result in the Malli-
avin calculus. Directional gradients in the direction of arbitrary Hilbertian
subspaces have been considered by Goldys, Gozzi, and van Neerven [69]. The
result presented here is an easy generalisation of their result. A slightly more
subtle argument shows that Theorem 1.33 remains valid for p = 1, but we will
not use this fact in this work.
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Ornstein-Uhlenbeck Operators

This chapter is devoted to the study of Ornstein-Uhlenbeck operators on
Lp(µ), where µ denotes a suitable Gaussian measure on a Banach space E.
These operators arise naturally as generators of transition semigroups associ-
ated with linear stochastic differential equations in E with additive noise.

We present the basic properties of the semigroups and investigate condi-
tions for analyticity and symmetry. The Lp-theory for the generators will be
studied in a more general setting in Chapter 4.

2.1 Ornstein-Uhlenbeck semigroups

Let H be a real separable Hilbert space and let E be a real separable Banach
space. We consider the following operators:

• −A is the generator of a C0-semigroup (S(t))t≥0 on E.
• i is a bounded operator from H into E.

It is immediate that the operator Q := ii∗ ∈ L(E∗, E) is positive and sym-
metric, i.e.

〈Qx∗, x∗〉 ≥ 0, 〈Qx∗, y∗〉 = 〈Q∗y∗, x∗〉, ∀x∗, y∗ ∈ E∗.

Throughout Chapter 2 we assume that

• for t > 0, the operator Qt ∈ L(E∗, E) defined by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds (2.1)

is the covariance of a Gaussian measure µt on E.

Although the integrand in the definition of Qt fails to be strongly continuous
in general, the definition is justified by the following result:
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Lemma 2.1. For t > 0, the integral in (2.1) exists as a Bochner integral.

Proof. For y∗ ∈ E∗ and an orthonormal basis (uj)j≥1 of H we have

〈S(s)QS∗(s)x∗, y∗〉 = [i∗S∗(s)x∗, i∗S∗(s)y∗]

=
∞∑
j=1

[i∗S∗(s)x∗, uj ] [uj , i∗S∗(s)y∗].

=
∞∑
j=1

〈S(s)iuj , x∗〉 〈S(s)iuj , y∗〉,

thus 〈S(·)QS∗(·)x∗, y∗〉 can be written as a countable sum of continuous func-
tions. This proves weak measurability of the integrand. Since E is separable,
strong measurability follows from the Pettis measurability theorem [53, Chap-
ter II]. �

For future use, we record that the definition of Qt implies the algebraic
identity

Qs+t := Qs + S(s)QtS∗(s), s, t ≥ 0. (2.2)

The Ornstein-Uhlenbeck semigroup (P (t))t≥0 associated with (A, i) is de-
fined on the space Bb(E) of bounded Borel functions on E, by

(P (t)f)(x) :=
∫
E

f(S(t)x+ y) dµt(y), t ≥ 0, f ∈ Bb(E), x ∈ E.

Some basic properties of P are collected in the following result. In the proof
we let µ ∗ ν ∈ P(E) denote the convolution, defined for µ, ν ∈ P(E) by
µ ∗ ν := S#(µ⊗ ν), where S : E × E → E is given by S(x, y) := x+ y.

Proposition 2.2. For all s, t ≥ 0 and f ∈ Bb(E) we have

(1) P (s)P (t)f := P (s+ t)f ;
(2) P (t)f ≥ 0 whenever f ≥ 0;
(3) P (t)f ∈ Cb(E) whenever f ∈ Cb(E).

Proof. (1) Taking Fourier transforms we see that that (2.2) implies

µs+t := µt ∗ (S(t)#µs).

Using this identity we obtain
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P (s)P (t)f =
∫
E

(P (t)f)(S(s)x+ y) dµs(y)

=
∫
E

∫
E

f(S(t)(S(s)x+ y) + z) dµt(z) dµs(y)

=
∫
E

∫
E

f(S(s+ t)x+ w + z) dµt(z) d(S(t)#µs)(w)

=
∫
E

∫
E

f(S(s+ t)x+ y) dµs+t(y)

= P (s+ t)f(x).

(2) Trivial.
(3) Suppose that xn → x in E. Since f is bounded and S is strongly

continuous, we may apply the dominated convergence theorem to obtain

P (t)f(xn) =
∫
E

f(S(t)xn + y) dµt(y)

→
∫
E

f(S(t)x+ y) dµt(y) = P (t)f(x).

This proves continuity of P (t)f . The boundedness is immediate. �

Remark 2.3. The semigroup (P (t))t≥0 is not strongly continuous on Cb(E)
whenever A 6= 0 (see, e.g., [93]).

Remark 2.4. Let us briefly discuss the relationship between the operators con-
sidered in this section and the linear stochastic abstract Cauchy problem in
E.

Let WH be an H-cylindrical Wiener process (see Section 12.1), and con-
sider for x ∈ E the linear stochastic Cauchy problem{

dX(t) = −AX(t) dt+ i dWH(t), t ≥ 0,
X(0) = x.

(2.3)

It has been shown in [135] that (2.3) admits a unique solution if and only if
for any t > 0 the operator Qt defined in (2.1) is the covariance of a Gaussian
measure on E. In this case the solution is given by

Xx(t) = S(t)x+
∫ t

0

S(t− s)i dWH(s), t ≥ 0,

where the integral is the Banach space valued stochastic integral defined in
[19, 135]. It readily follows that for any Cb(E),

P (t)f(x) = Ef(Xx(t)), x ∈ E, t ≥ 0,

which means that P is the transition semigroup associated with (2.3).
We refer to Section 12.1 for an outline of the construction of the vector-

valued stochastic integral.
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Ornstein-Uhlenbeck semigroups with an invariant measure

In the remainder of Chapter 2 we impose the following additional assumption:

• Q∞ := limt→∞Qt exists in the weak operator topology, and Q∞ is the
covariance of a Gaussian measure µ∞ on E.

This assumption allows us to study the semigroup P in an Lp-setting.
Passing to the weak operator limit t→∞ in (2.2) we obtain

Q∞ = Qs + S(s)Q∞S∗(s), s ≥ 0. (2.4)

A Borel probability measure µ ∈ P(E) is said to be invariant for the
semigroup P if ∫

E

P (t)f dµ =
∫
E

f dµ, f ∈ Bb(E), t ≥ 0.

Theorem 2.5. The measure µ∞ is invariant for P. Moreover, P extends to
a C0-semigroup of contractions on Lp(µ∞) for all 1 ≤ p <∞.

Proof. The identity (2.4) implies that µ∞ = µt∗S(t)#µ∞ for t > 0. Therefore,
for f ∈ Bb(E) we obtain∫

E

P (t)f(x) dµ∞(x) =
∫
E

∫
E

f(S(t)x+ y) dµt(y) dµ∞(x)

=
∫
E

f(z) d(µt ∗ S(t)#µ∞)(z)

=
∫
E

f(x) dµ∞(x),

which shows that µ∞ is invariant for P.
For f ∈ Cb(E) and x ∈ E we obtain by Jensen’s inequality

|P (t)f(x)|p =
∣∣∣ ∫
E

f(S(t)x+ y) dµt(y)
∣∣∣p

≤
∫
E

|f |p(S(t)x+ y) dµt(y)

= P (t)|f |p(x).

Integrating this inequality and using the invariance of µ∞, we obtain

‖P (t)f‖Lp(µ∞) ≤
∫
E

P (t)|f |p dµ∞ =
∫
E

|f |p dµ∞ = ‖f‖pLp(µ∞).

To prove strong continuity we take f ∈ FC1
b(E) of the form

f(x) := ϕ(〈x, x∗1〉, . . . , 〈x, x∗n〉)
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where x∗1, . . . , x
∗
n ∈ E∗ and ϕ ∈ C1

b(Rn). For x ∈ E we obtain

|P (t)f(x)− f(x)| =
∣∣∣ ∫
E

ϕ(〈S(t)x+ y, x∗1〉, . . . , 〈S(t)x+ y, x∗n〉)

− ϕ(〈x, x∗1〉, . . . , 〈x, x∗n〉) dµt(y)
∣∣∣

≤
n∑
j=1

‖∂jϕ‖∞
∫
E

∣∣〈S(t)x− x+ y, x∗j 〉
∣∣ dµt(y)

≤
n∑
j=1

‖∂jϕ‖∞
[
‖S(t)x− x‖ ‖x∗j‖+

(∫
E

〈y, x∗j 〉2 dµt(y)
)1/2]

Since S(t)x→ x and∫
E

〈y, x∗j 〉2 dµt(y) = 〈Qtx∗j , x∗j 〉 → 0,

it follows that P (t)f(x) → f(x) as t ↓ 0. By the dominated convergence
theorem, it follows that ‖P (t)f − f‖Lp(µ∞) → 0. Combined with the density
of FC1

b(E) in Lp(µ∞), the result follows. �

In order to obtain a useful description of P in Theorem 2.8 below, we
will study the reproducing kernel Hilbert space H∞ associated with Q∞. Let
i∞ : H∞ ↪→ E denote the canonical embedding, and let φ : H∞ → L2(µ∞)
be the Paley-Wiener map. The next result shows that S behaves remarkably
nice when restricted to H∞:

Proposition 2.6. For t ≥ 0 the semigroup S maps i∞H∞ into itself and
restricts to a C0-semigroup of contractions S∞ on H∞.

The proof relies on the following general lemma.

Lemma 2.7. Let j be a continuous embedding from a Hilbert space H into a
Banach space E, and let T ∈ L(E). Then T restricts to a bounded operator of
norm ≤M on H if and only if

‖j∗T ∗x∗‖ ≤M‖j∗x∗‖, x∗ ∈ E∗.

Proof. First we observe that, as j is injective, j∗ has dense range in H. The
estimate implies that the mapping j∗x∗ 7→ j∗T ∗x∗ is well-defined on j∗(E∗)
and extends to a bounded operator R ∈ L(H) of norm ≤ M. For h ∈ H and
x∗ ∈ E∗ we have

〈jR∗h, x∗〉 = [h,Rj∗x∗] = [h, j∗T ∗x∗] = 〈Tjh, x∗〉,

hence Tjh = jR∗h, which proves one implication.
Conversely, if Tj = jS for some S ∈ L(H) with ‖S‖L(H) ≤M, then
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[h, j∗T ∗x∗] = 〈Tjh, x∗〉 = 〈jSh, x∗〉 = [Sh, j∗x∗].

Taking the supremum over all h in the unit ball of H, we obtain

‖j∗Tx∗‖ = sup
h

[h, j∗T ∗x∗] = sup
h

[Sh, j∗x∗] ≤M‖j∗x∗‖.

�

Proof (of Proposition 2.6). Invariance and contractivity follows from Lemma
2.7 combined with the estimate

‖i∗∞S∗(t)x∗‖2 = 〈Q∞S∗(t)x∗,S∗(t)x∗〉

=
∫ ∞

0

〈QS∗(s+ t)x∗,S∗(s+ t)x∗〉 ds

=
∫ ∞
t

〈QS∗(s)x∗,S∗(s)x∗〉 ds

≤
∫ ∞

0

〈QS∗(s)x∗,S∗(s)x∗〉 ds

= 〈Q∞x∗, x∗〉
= ‖i∗∞x∗‖2.

By Proposition 1.12, strong continuity of S∗∞ is equivalent to continuity of
t 7→ φS∗∞(t)h in L2(µ∞). Since i∗∞E

∗ is dense in H∞, it suffices to prove this
for any element of the form h := i∗∞x

∗ with x∗ ∈ E∗. Using the dominated
convergence theorem we obtain

‖φS∗∞(t)h − φh‖22 =
∫
E

|〈x,S∗(t)x∗ − x∗〉|2 dµ∞

=
∫
E

|〈S(t)x− x, x∗〉|2 dµ∞ → 0.

This shows that S∗∞ (hence S∞) is strongly continuous. �

Now we are in a position to prove that Ornstein-Uhlenbeck semigroups
can be obtained by second quantisation of S∗∞. We refer to Section 1.4 for
more information on second quantisation.

Theorem 2.8. For t ≥ 0 and f ∈ Lp(µ∞) we have P (t) = Γ (S∗∞(t)).

Proof. In view of Proposition 1.16, Theorem 1.22, and Theorem 2.5, it suffices
to prove that both semigroups agree on all elements of the form Eh for h ∈
H∞. Since i∗∞E

∗ is dense in H∞, we may take h = i∗∞x
∗ for some x∗ ∈ E∗.

By (1.12) we have
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Γ (S∗∞(t))Ei∗∞x∗(x) = ES∗∞(t)i∗∞x
∗(x)

= Ei∗∞S∗(t)x∗(x)

= exp(〈x,S∗(t)x∗〉 − 1
2
‖i∗∞S∗(t)x∗‖2).

= exp(〈S(t)x, x∗〉 − 1
2
〈Q∞S∗(t)x∗,S∗(t)x∗〉).

(2.5)

On the other hand, using that (x∗)#µt is centered Gaussian with covari-
ance 〈Qtx∗, x∗〉 we obtain

P (t)Eh(x) =
∫
E

Eh(S(t)x+ y) dµt(y)

=
∫
E

exp
(
〈S(t)x+ y, x∗〉 − 1

2
〈Q∞x∗, x∗〉

)
dµt(y)

= exp
(
〈S(t)x, x∗〉 − 1

2
〈Q∞x∗, x∗〉

)
·

· 1√
2π〈Qtx∗, x∗〉

∫
R

exp
(
ξ − ξ2

2〈Qtx∗, x∗〉

)
dξ

= exp
(
〈S(t)x, x∗〉 − 1

2
〈Q∞x∗, x∗〉

)
exp

(1
2
〈Qtx∗, x∗〉

)
.

Using (2.4) we see that the last expression coincides with (2.5). �

The Lyapunov equation

The following result concerning the generator −A∗∞ of S∗∞ will be used fre-
quently.

Lemma 2.9. For x∗ ∈ D(A∗) we have i∗∞x
∗ ∈ D(A∗∞) and A∗∞i∗∞x∗ =

i∗∞A∗x∗. Moreover, the space i∗∞(D(A∗)) is a core for D(A∗∞).

Proof. For h ∈ H∞ we have

[h, (S∗∞(t)− I)i∗∞x
∗] = [h, i∗∞(S∗(t)− I)x∗] = 〈i∞h, (S∗(t)− I)x∗〉,

which implies that

lim
t→0

[h,
1
t
(S∗∞(t)− I)i∗∞x

∗] = lim
t→0
〈i∞h,

1
t
(S∗(t)− I)x∗〉

= −〈i∞h,A∗x∗〉 = −[h, i∗∞A∗x∗].

By a standard result in semigroup theory [57], the weak generator of a C0-
semigroup equals the strong generator. Therefore we obtain that i∗∞x

∗ ∈
D(A∗∞) and A∗∞i∞x∗ = i∗∞A∗x∗.

To prove the second claim, according to another well-known result from
semigroup theory [57], it suffices to show that i∗∞(D(A∗)) is dense in H∞ and
invariant under S∗∞.
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Since D(A∗) is weak∗-dense in E∗ and i∗∞ is weak∗-to-weakly continuous,
i∗∞(D(A∗)) is weakly dense, hence dense in H.

For t ≥ 0 and x∗ ∈ D(A∗) we have S∗∞(t)i∗∞x
∗ = i∗∞S∗(t)x∗. Since S∗(t)

maps D(A∗) into itself, it follows that i∗∞(D(A∗)) is invariant under S∗∞, which
completes the proof. �

The next result is an algebraic identity which be crucial in the investigation
of analyticity of the semigroups S∞ and P.

Proposition 2.10 (Lyapunov equation). For any x∗ ∈ D(A∗) we have
Q∞x

∗ ∈ D(A) and

Qx∗ = Q∞A∗x∗ +AQ∞x∗.

Proof. For y∗ ∈ D(A∗), (2.4) implies that

〈Q∞x∗, y∗〉 = 〈Qtx∗, y∗〉+ 〈Q∞S∗(t)x∗,S∗(t)y∗〉, t > 0.

Note that t 7→ S∗(t)x∗ is weak∗-continuous. Being a symmetric operator,
Q is weak∗-to-weakly continuous. Since S is a C0-semigroup, t 7→ S(t)x is
weakly continuous. Putting these observations together, we obtain that t 7→
〈S(t)QS∗(t)x∗, y∗〉 is continuous. Therefore, by the fundamental theorem of
calculus, t 7→ 〈Qtx∗, y∗〉 is differentiable at 0, and

∂t
∣∣
t=0
〈Qtx∗, y∗〉 = ∂t

∣∣
t=0

∫ t

0

〈S(s)QS∗(s)x∗, y∗〉 ds = 〈Qx∗, y∗〉.

On the other hand, we have

〈Q∞S∗(t)x∗,S∗(t)y∗〉 − 〈Q∞x∗, y∗〉
= 〈Q∞(S∗(t)− I)x∗,S∗(t)y∗〉+ 〈Q∞x∗, (S∗(t)− I)y∗〉
= [(S∗∞(t)− I)i∗∞x

∗,S∗∞(t)i∗∞y
∗] + 〈Q∞x∗, (S∗(t)− I)y∗〉.

Dividing by t and passing to the limit t ↓ 0 we obtain in view of Proposition
2.6 and Lemma 2.9,

∂t
∣∣
t=0
〈Q∞S∗(t)x∗,S∗(t)y∗〉 = −[A∗∞i∗∞x∗, i∗∞y∗]− 〈Q∞x∗,A∗y∗〉

= −〈Q∞A∗x∗, y∗〉 − 〈Q∞x∗,A∗y∗〉.

Putting these identities together we find

〈Q∞A∗x∗, y∗〉+ 〈Q∞x∗,A∗y∗〉 = 〈Qx∗, y∗〉.

Since A is closed and densely defined, it follows from the Hahn-Banach theo-
rem that Q∞x∗ ∈ D(A) and Qx∗ = Q∞A∗x∗ +AQ∞x∗. �

The following simple lemma allows the construction of a useful operator.
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Lemma 2.11. We have N(i∗∞) ⊆ N(i∗).

Proof. Suppose that i∗∞x
∗ = 0, hence

∫∞
0
‖i∗S∗(t)x∗‖2 dt = 0. This implies

that i∗S∗(t)x∗ = 0 for a.e. t ≥ 0. In particular, we can find a sequence tk
converging to 0, with i∗S∗(tk)x∗ = 0 for all k ≥ 1. The weak∗-continuity of
t 7→ S∗(t)x∗ implies that for all u ∈ H,

[u, i∗x∗] = 〈iu, x∗〉 = lim
k→∞

〈iu,S∗(tk)x∗〉 = lim
k→∞

〈u, i∗S∗(tk)x∗〉 = 0,

hence i∗x∗ = 0. �

Thanks to Lemma 2.11 it makes sense to define the following operator:

V : i∗∞(E∗) ⊆ H∞ → H, V (i∗∞x
∗) := i∗x∗. (2.6)

Using this operator we can formulate the following useful consequence of
the Lyapunov equation.

Corollary 2.12. For all g, h ∈ i∗∞(D(A∗)) we have

[A∗∞g, h] + [g,A∗∞h] = [V g, V h].

Proof. In view of Lemma 2.9 and Proposition 2.10 we obtain, for x∗, y∗ ∈
D(A∗),

[A∗∞i∗∞x∗, i∗∞y∗] = [i∗∞A∗x∗, i∗∞y∗]
= 〈Q∞A∗x∗, y∗〉
= −〈AQ∞x∗, y∗〉+ 〈Qx∗, y∗〉
= −[i∗∞x

∗, i∗∞A∗y∗] + [i∗x∗, i∗y∗]
= −[i∗∞x

∗,A∗∞i∗∞y∗] + [V i∗∞x
∗, V i∗∞y

∗].

�

2.2 Analyticity

The following result provides a well-known criterion for analyticity of con-
traction semigroups on Hilbert spaces, which is sometimes called the strong
sector condition. We refer to Definition 5.44 for the definition of an analytic
contraction C0-semigroup.

Proposition 2.13. Let −G be the generator of a C0-semigroup T of contrac-
tions on a real Hilbert space H. The following assertions are equivalent:

(i) T extends to an analytic contraction C0-semigroup;
(ii) |[Gg, h]| . [Gg, g]1/2[Gh, h]1/2 for all g, h ∈ D(G).
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Proof. The result follows from [141, Theorems 1.53 and 1.58] combined with
[103, Proposition 2.17]. �

From now on we shall make the additional assumption that i is injective.
Note that there is no loss of generality, since we may replace i by the canonical
embedding HQ ↪→ E, where HQ denotes the RKHS associated with Q = ii∗,
without affecting the semigroups P and S∞.

The next theorem is taken from [68, 70] and provides various characteri-
sations of analyticity for Ornstein-Uhlenbeck semigroups. In view of (vi) we
recall that Q∞ maps D(A∗) into D(A) by Proposition 2.10.

Theorem 2.14. For 1 < p <∞ the following assertions are equivalent:

(i) P extends to an analytic C0-semigroup on Lp(µ);
(ii) P extends to an analytic contraction C0-semigroup on Lp(µ);

(iii) S∞ extends to an analytic contraction C0-semigroup on H∞;
(iv) For g, h ∈ D(A∗∞) we have

|[A∗∞g, h]| . [A∗∞g, g]1/2[A∗∞h, h]1/2.

(v) There exists a bounded operator B ∈ L(H) satisfying

iBi∗x∗ = Q∞A∗x∗ x∗ ∈ D(A∗);

(vi) There exists a bounded operator C ∈ L(H) satisfying

iCi∗x∗ = AQ∞x∗ x∗ ∈ D(A∗).

In this case we have

B∗ = C, B +B∗ = C + C∗ = I. (2.7)

If the equivalent conditions of the theorem are fulfilled, we will simply say
that P is analytic.

Proof. (i)⇔ (ii)⇔ (iii) follows from Theorems 1.26 and 2.8.
(iii)⇔ (iv) follows from Proposition 2.13.
(iv)⇒ (v): For x∗, y∗ ∈ D(A∗) we have by Lemma 2.9,

[A∗∞i∗∞x∗, i∗∞y∗] = [i∗∞A∗x∗, i∗∞y∗] = 〈Q∞A∗x∗, y∗〉, (2.8)

and by Proposition 2.10,

[A∗∞i∗∞x∗, i∗∞x∗] = 〈Q∞A∗x∗, x∗〉 =
1
2
〈Qx∗, x∗〉 =

1
2
‖i∗x∗‖2. (2.9)

Therefore, (iv) implies that, for some k ≥ 0,

〈Q∞A∗x∗, y∗〉 ≤ k‖i∗x∗‖ ‖i∗y∗‖.
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Since i∗ is weak∗-to-weakly continuous, i∗(D(A∗)) is dense in H (here we use
the injectivity of i). Therefore the Riesz Representation Theorem guarantees
for each x∗ ∈ E∗ the existence of hx∗ ∈ H satisfying ‖h∗x‖ ≤ k‖i∗x∗‖ and

〈Q∞A∗x∗, y∗〉 = [hx∗ , i∗y∗] = 〈ihx∗ , y∗〉.

Since this holds for all y∗ in the weak∗-dense subspace D(A∗) ⊆ E∗, we infer
that Q∞A∗x∗ = ihx∗ . The result follows with Bi∗x∗ := hx∗ .

(v)⇒ (iv) : For x∗, y∗ ∈ D(A∗) we obtain in view of (2.8) and (2.9),

[A∗∞i∗∞x∗, i∗∞y∗] = 〈Q∞A∗x∗, y∗〉 = 〈iBi∗x∗, y∗〉
= [Bi∗x∗, i∗y∗] ≤ ‖B‖ ‖i∗x∗‖ ‖i∗y∗‖
= ‖B‖ [A∗∞i∗∞x∗, i∗∞x∗]1/2 [A∗∞i∗∞y∗, i∗∞y∗]1/2.

Since i∗∞(D(A∗)) is a core for D(A∗∞) by Lemma 2.9, the result follows.
(iv)⇔ (vi) : This is proved in the same way as (iv)⇔ (v).
The final identities follow from the fact that for all x∗, y∗ ∈ D(A∗),

[Bi∗x∗, i∗y∗] = 〈Q∞A∗x∗, y∗〉 = 〈x∗,AQ∞y∗〉 = [i∗x∗, Ci∗y∗],

and, in view of Proposition 2.10,

[Bi∗x∗, i∗y∗] = 〈Q∞A∗x∗, y∗〉
= −〈AQ∞x∗, y∗〉+ 〈Qx∗, y∗〉
= −[Ci∗x∗, i∗y∗] + [i∗x∗, i∗y∗].

�

A consequence of analyticity is the following result.

Proposition 2.15. If P is analytic, then the operator V defined in (2.6) is
closable from H∞ into H.

Proof. According to Lemma 1.31, it suffices to show that Bi∗(D(A∗)) is a
dense subspace of H, which is contained in D(V ∗).

For all x∗ ∈ D(A∗) and y∗ ∈ E∗ we have

[Bi∗x∗, V i∗∞y
∗] = 〈Q∞A∗x∗, y∗〉 = [i∗∞A∗x∗, i∗∞y∗] = [A∗∞i∗∞x∗, i∗∞y∗].

Consequently, Bi∗x∗ ∈ D(V ∗) and

V ∗Bi∗x∗ = A∗∞x∗.

To prove the density of Bi∗(D(A∗)) in H, we note (as in the proof of
Theorem 2.14) that i∗D(A∗) is dense in H, since D(A∗) is weak∗-dense in E∗

and i∗ is weak∗-to-weakly continuous. Moreover, B is an isomorphism on H,
since (2.7) implies that

‖u‖2 = [(B +B∗)u, u] = 2[Bu, u] ≤ 2‖Bu‖ ‖u‖, u ∈ H,

hence ‖u‖ ≤ 2‖Bu‖. We infer that Bi∗(D(A∗)) is dense in H, hence V is
closable. �
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As a consequence we obtain the following result which motivates the study
of elliptic operators on Wiener spaces in Chapter 4.

Theorem 2.16. Suppose that P is analytic. Then we have the factorisation

A∗∞ = V ∗BV.

Proof. ”⊆”: Take h ∈ D(A∗∞). Using Lemma 2.9 we find (x∗n)n ⊆ D(A∗) such
that i∗∞x

∗
n → h and A∗∞i∗∞x∗n = i∗∞A∗x∗n → A∗∞h. The desired inclusion

follows from the following two claims:

• h ∈ D(V ) and V h = limn→∞ i∗x∗n.

Indeed, by Corollary 2.12,

‖V i∗∞(x∗m − x∗n)‖ = 2[A∗∞i∗∞(x∗m − x∗n), i∗∞(x∗m − x∗n)]→ 0.

Since V is closed, the claim follows.

• BV h ∈ D(V ∗) and V ∗BV h = A∗∞h.

For y∗ ∈ E∗ we have

[A∗∞i∗∞x∗n, i∗∞y∗] = [i∗∞A∗x∗n, i∗∞y∗] = 〈Q∞A∗x∗n, y∗〉
= 〈iBi∗x∗n, y∗〉 = [Bi∗x∗n, i

∗y∗] = [Bi∗x∗n, V i
∗
∞y
∗].

Since A∗∞i∗∞x∗n → A∗∞h and i∗x∗n → V h, we infer that

[A∗∞h, i∗∞y∗] = [BV h, V i∗∞y
∗].

Since i∗∞(E∗) is a core for D(V ), it follows that BV h ∈ D(V ∗) and V ∗BV h =
A∗∞h.

”⊇”: Since V is closed and [Bu, u] = 1
2‖u‖

2 for u ∈ H, it follows that the
(complexification of the) bilinear form

a : D(V )× D(V ) ⊆ H∞ ×H∞ → R, a(g, h) := [BV g, V h],

is closed, densely defined and sectorial (see Section 5.5 for the definitions of
these notions). Hence, by the theory of sesquilinear forms (see [141, Chapter
1]), the operator −G defined by

D(G) := {h ∈ D(V ) : ∃f ∈ H ∀g ∈ D(V ) a(h, g) = [f, g]}, Gh := f,

generates a C0-semigroup on H. By definition, G = V ∗BV. Since −A∗∞ ⊆
−V ∗BV and both operators generate a C0-semigroup, it follows that the
operators are equal. �

For selfadjoint Ornstein-Uhlenbeck semigroups P it has been shown in
[33, 70] that that H is invariant under the dirft semigroup S. The following
theorem extends this result to analytic P.
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Theorem 2.17. If P is analytic, then S restricts to a bounded analytic C0-
semigroup SH on H. The generators of SH and S∗H are the operators −B∗V V ∗
and −V V ∗B respectively.

Proof. We will use the fact, proved in Section 3.4 below, that the operator
−G := −V V ∗B generates a bounded analytic C0-semigroup (T (t))t≥0 on H.
To prove the first claim, it suffices to show that iT ∗(t) = S(t)i for all t ≥ 0.

Take y∗ ∈ D(A∗). By Lemma 2.9 and Theorem 2.16 we have BV i∗∞y
∗ ∈

D(V ∗) and V ∗BV i∗∞y
∗ = i∗∞A∗y∗. This implies that V ∗BV i∗∞y

∗ ∈ D(V ),
hence V i∗∞y

∗ ∈ D(G) and

GV i∗∞y
∗ = V i∗∞A∗y∗.

For λ > 0 it follows that (I + λG)V i∗∞y
∗ = V i∗∞(I + λA∗)y∗. Applying this

to y∗ = (I + λA∗)−1x∗ for x∗ ∈ E∗, we obtain

V (I + λA∗∞)−1i∗∞x
∗ = V i∗∞(I + λA∗)−1x∗ = (I + λG)−1V i∗∞x

∗.

Taking λ = t
n and repeating this argument n times we obtain

V (I + t
nA
∗
∞)−ni∗∞x

∗ = (I + t
nG)−nV i∗∞x

∗.

Passing to the limit n → ∞ and using the closedness of V , it follows that
S∗∞(t)i∗∞x

∗ ∈ D(V ) and

V S∗∞(t)i∗∞x
∗ = T (t)V i∗∞x

∗.

In view of the identities

V S∗∞(t)i∗∞x
∗ = V i∗∞S∗(t)x∗ = i∗S∗(t)x∗, T (t)V i∗∞x

∗ = T (t)i∗x∗,

we infer that T (t)i∗ = i∗S∗(t), thus by duality iT ∗(t) = S(t)i.
To complete the proof, it remains to show that (V V ∗B)∗ = B∗V V ∗. This

follows by combining Proposition 3.4 below with the fact that V V ∗ is selfad-
joint. �

2.3 Symmetry

After the investigation of analyticity of Ornstein-Uhlenbeck semigroups in the
previous section, we now turn to the stronger property of symmetry.

The following result gives a characterisation of selfadjointness of the
Ornstein-Uhlenbeck semigroup in terms of the noise Q and the drift semi-
group S. The result has been proved in [33, Theorem 2.4] a Hilbert space
setting and extended to Banach spaces in [70, Theorem 4.5]. Here we present
a partly different proof which employs Theorem 2.17. As before we assume
that the operator i : H → E is injective.
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Proposition 2.18 (Characterisation of symmetry). The following asser-
tions are equivalent:

(1) For any x∗ ∈ E∗ and t ≥ 0 we have QS∗(t) = S(t)Q;
(2) The semigroup S maps i(H) into itself and the restricted semigroup SH is

selfadjoint on H;
(3) For any x∗ ∈ E∗ and t ≥ 0 we have Q∞S∗(t) = S(t)Q∞;
(4) The semigroup S∞ is selfadjoint on H∞;
(5) The semigroup P is selfadjoint on L2(µ∞).

Proof. (1) ⇒ (3): For t ≥ 0 and x∗, y∗ ∈ E∗ we obtain

〈Q∞S∗(t)x∗, y∗〉 =
∫ ∞

0

〈QS∗(s+ t)x∗,S∗(s)y∗〉 ds

=
∫ ∞

0

〈QS∗(s)x∗,S∗(s+ t)y∗〉 ds

= 〈Q∞x∗,S∗(t)y∗〉
= 〈S(t)Q∞x∗, y∗〉,

from which we infer that Q∞S∗(t) = S(t)Q∞.
(3) ⇒ (4): For t ≥ 0 and x∗, y∗ ∈ E∗ we have

[S∗∞(t)i∗∞x
∗, i∗∞y

∗] = 〈Q∞S∗(t)x∗, y∗〉 = 〈S(t)Q∞x∗, y∗〉 = 〈Q∞x∗,S∗(t)y∗〉
= [i∗∞x

∗,S∗∞(t)i∗∞y
∗] = [S∞(t)i∗∞x

∗, i∗∞y
∗].

Since i∗∞(E∗) is dense in H∞, the result follows.
(4)⇒ (2): Since S∞ is selfadjoint and therefore analytic, the invariance of

H under S follows from Theorem 2.17. Moreover, for x∗, y∗ ∈ D(A∗), Lemma
2.9 implies that

2[Bi∗x∗, i∗y∗] = 2[A∗∞i∗∞x∗, i∗∞y∗]
= [A∗∞i∗∞x∗, i∗∞y∗] + [i∗∞x

∗,A∗∞i∗∞y∗]
= [V i∗∞x

∗, V i∗∞y
∗]

= [i∗x∗, i∗y∗].

The argument in the proof of Lemma 2.9 shows that i∗(D(A∗)) is dense in
H. Consequently, the computation above implies that B = 1

2I, hence AH =
A∗H = 1

2V V
∗ by Theorem 2.17, and therefore SH is selfadjoint.

(2) ⇒ (1): For x∗, y∗ ∈ E∗ we have

〈QS∗(t)x∗, y∗〉 = [i∗S∗(t)x∗, i∗y∗] = [S∗H(t)i∗x∗, i∗y∗]
= [S∗H(t)i∗y∗, i∗x∗] = 〈QS∗(t)y∗, x∗〉
= 〈Qx∗,S∗(t)y∗〉 = 〈S(t)Qx∗, y∗〉,

which gives the desired result.
(4) ⇔ (5): This follows immediately from the identification of P as the

second quantisation of S∗∞ in Theorem 2.8. �
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2.4 Notes

A MathSciNet search on “Ornstein-Uhlenbeck” gives 1647 hits (on 11th March
2009), which makes a complete overview of the literature impossible. We
present a subjective and incomplete selection.

Finite dimensional Ornstein-Uhlenbeck processes have been introduced by
the physicists Ornstein and Uhlenbeck [162] in their study of the kinetic theory
of gases.

In infinite dimensions, the Ornstein-Uhlenbeck semigroup (Γ (e−tI))t≥0

seems to have first appeared in the PhD-thesis of Piech [143]. It plays an
important role in the mathematical physics literature, such as [67, 137, 155]
and many other works where the generator is known as the number operator.

With the advent of Malliavin calculus [111], the Ornstein-Uhlenbeck semi-
group became one of the central objects in stochastic analysis (see also Stroock
[157], P.A. Meyer [126, 127] and many other papers).

Later Ornstein-Uhlenbeck semigroups appeared in a wide range of applica-
tions: in the work of Holley and Stroock [80]) on interacting particle systems;
Walsh used them as a model for neuronal activity in [168]; they also appear
in Kolmogorov’s kinematic approach to turbulence (see Carmona [24] and
Avellaneda and Majda [11]).

Non-symmetric Ornstein-Uhlenbeck semigroups have been studied exten-
sively during the last 15 years, in particular by the Polish and Italian schools.
We refer to the books by Da Prato and Zabczyk [45, 46, 47], the sequence of
papers by Chojnowska-Michalik and Goldys [29, 30, 31, 32, 33], and among
many possible references we quote [15, 16, 44, 65, 70, 102, 124, 125, 132, 133].

The identification of non-symmetric Ornstein-Uhlenbeck semigroups as
second quantised operators has been proved in [29] (see also [15]).

There exists examples of Ornstein-Uhlenbeck semigroups which fail to be
analytic, although S∞ is an analytic semigroup satisfying ‖S∞(t)‖L(H∞) ≤ 1
for all t ≥ 0. Of course, Theorem 2.14 implies that in this situation S∞
fails to be contractive on any sector of strictly positive angle. An example
of this phenomenon in E = R2 has been constructed in [64]. It follows from
Theorem 2.14 that Ornstein-Uhlenbeck semigroups are analytic if E is finite
dimensional and the noise is non-degenerate, in the sense N(Q) = {0}.

All results that we presented in this chapter are known, with the excep-
tion of the H-invariance of analytic Ornstein-Uhlenbeck semigroups (Theorem
2.17). This generalises a result from [70]. A different proof of Proposition 2.15
can be found in the same paper.
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Perturbed Hodge-Dirac Operators on Hilbert
Spaces

In this chapter we discuss an operator theoretic framework which underlies
many results in harmonic analysis. It has been developed and used by Axels-
son, Keith, and McIntosh [12] as a new approach to the famous Kato square
root problem. The basic philosophy is as follows.

Suppose that one is interested in the boundedness of a (singular integral)
operator, say, the Riesz transform R = ∇L−1/2 associated with a second
order differential operator L on L2(Rn). We would like to apply the theory
of H∞-calculus to this problem, but unfortunately R does not belong to the
functional calculi of ∇ and L. To circumvent this difficulty, we consider the
Hodge-Dirac operator associated with ∇ and L. This is a bisectorial operator
T with the property that R belongs to its functional calculus: R = ψ(T ) for
some bounded analytic function ψ defined on a bisector. In many examples ψ
is the sgn-function. By the theory of H∞-calculus, to prove the boundedness
of R, it therefore suffices to prove square function estimates for T.

At this point, one usually needs harmonic analysis to prove the square
function estimates in each particular case, but the abstract idea works in a
very general setting.

In Chapter 4 we will apply the Hilbert space theory from this chapter to
the first Wiener-Itô chaos in the study of Lp-estimates for elliptic operators
on Wiener spaces.

3.1 Hodge-Dirac operators on Hilbert spaces

In this section we will present some operator theoretic aspects of a class of ab-
stract Hodge-Dirac operators on Hilbert spaces following [12]. Before turning
to the general setup, we collect some elementary facts on coercive operators
and compositions of closed operators.
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Coercive operators

Let U be a subspace of a Hilbert space H.

Definition 3.1. A bounded operator B ∈ L(H) is said to be coercive on U , if
there exists κ > 0 such that

Re [Bu, u] ≥ κ‖u‖2, u ∈ U . (3.1)

An operator which is coercive on H is simply called coercive.

We define the angle of coercivity of B by

ωc(B) := sup
u∈U

arg[Bu, u]. (3.2)

Note that ωc(B) < 1
2π.

Remark 3.2. It follows directly from the definition that an operator B which
is coercive on U has the following properties:

(i) B is coercive on U .
(ii) B∗ is coercive on U .

(iii) ‖Bu‖ h ‖u‖ h ‖B∗u‖ for u ∈ U . This follows from the fact that

‖u‖2 . Re [Bu, u] ≤ ‖Bu‖ ‖u‖, u ∈ U ,

hence ‖u‖ . ‖Bu‖. The estimate ‖u‖ . ‖B∗u‖ is obtained similarly.

Compositions of closed operators

Let X,Y, Z be Banach spaces. Compositions of operators are defined in the
following “naive” way. For operators A : D(A) ⊆ Y → Z and B : D(B) ⊆
X → Y we define

D(AB) := {x ∈ D(B) : Bx ∈ D(A)},
(AB)x := A(Bx), x ∈ D(AB).

The following result can be found in many textbooks.

Lemma 3.3. Let X and Y be reflexive Banach spaces and let A : D(A) ⊆
X → Y be closed and densely defined. Then A∗ is closed and densely defined,
and A∗∗ = A.

Proposition 3.4. Let X and Y be reflexive Banach spaces, let A : D(A) ⊆
X → Y be closed and densely defined, and let S ∈ L(X) and T ∈ L(Y ) satisfy

‖S∗x∗‖ h ‖x∗‖, x∗ ∈ R(A∗), ‖Ty‖ h ‖y‖, y ∈ R(A).

Then TAS is closed and densely defined, and (TAS)∗ = S∗A∗T ∗.
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Proof. We will first prove the following claim: let C : D(C) ⊆ X → Y be closed
and densely defined, and let R ∈ L(Y ) satisfy ‖Ry‖ h ‖y‖ for y ∈ R(C). Then

RC is closed and densely defined, and (RC)∗ = C∗R∗. (3.3)

First note that D(RC) = D(C) is dense in X. To prove that RC is closed,
suppose that and xn → x and RCxn → y. Since ‖Cxn − Cxm‖ . ‖RCxn −
RCxm‖, it follows that Cxn converges to some ỹ ∈ Y. Since C is closed,
it follows that x ∈ D(C) and Cx = ỹ, hence x ∈ D(RC) and RCx =
limn→∞RCxn = y, which shows that RC is closed.

It remains to show that (RC)∗ = C∗R∗. Take y∗ ∈ D(RC)∗ and put x∗ :=
(RC)∗y∗. For all x ∈ D(RC) = D(C) we have 〈Cx,R∗y∗〉 = 〈RCx, y∗〉 =
〈x, x∗〉, hence R∗y∗ ∈ D(C∗) and C∗R∗y∗ = x∗.

Conversely, take y∗ ∈ D(C∗R∗) and put x∗ := C∗R∗y∗. For all x ∈ D(C) =
D(RC) we have 〈RCx, y∗〉 = 〈Cx,R∗y∗〉 = 〈x, x∗〉, hence y∗ ∈ D((RC)∗) and
(RC)∗y∗ = x∗. This completes the proof of the claim.

Applying (3.3) to R = S∗ and C = A∗, we obtain that S∗A∗ is closed
and densely defined, and (S∗A∗)∗ = AS. By Lemma 3.3 it follows that AS is
closed and densely defined and (AS)∗ = S∗A∗.

By another application of (3.3), this time to C = AS and R = T, we obtain
that TAS is closed and densely defined, and TAS = (AS)∗T ∗ = S∗A∗T ∗. �

The general setup

We will now present the setup in which we will work throughout this chap-
ter. Let H and H be separable Hilbert spaces. We are given the following
operators:

• V : D(V ) ⊆ H → H is closed and densely defined,
• B1 ∈ L(H) is coercive on R(V ∗),
• B2 ∈ L(H) is coercive on R(V ).

In our application we have B1 = IH , but the duality argument in the proof
of Proposition 3.9 forces us to consider the general case.

These operators can be naturally extended to the direct sum H := H⊕H
by defining

V̂ :=
[

0 0
V 0

]
, B̂1 :=

[
B1 0
0 0

]
, B̂2 :=

[
0 0
0 B2

]
.

The operator V̂ defined on its natural domain D(V )⊕H is a closed operator

on H . The operators B̂1 and B̂2 are bounded on H , and coercive on R(V̂ ∗)

and R(V̂ ) respectively. Moreover, ωc(B̂1) = ωc(B1) and ωc(B̂2) = ωc(B2).
We will consider the perturbed operators

VB := B∗2V B
∗
1 , V̂B := B̂∗2 V̂ B̂

∗
1 =

[
0 0

B∗2V B
∗
1 0

]
.
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Proposition 3.4 implies that their adjoints are given by

V ∗B := B1V
∗B2, V̂ ∗B := B̂1V̂

∗B̂2 =
[
0 B1V

∗B2

0 0

]
.

The perturbed Hodge-Dirac operators associated with the triple (V,B1, B2)
are defined by

TB := V̂ + V̂ ∗B =
[

0 B1V
∗B2

V 0

]
, T ∗B := V̂B + V̂ ∗ =

[
0 V ∗

B∗2V B
∗
1 0

]
.

3.2 The Hodge decomposition

In this section we will be concerned with decompositions of the Hilbert spaces
H and H induced by perturbed Hodge-Dirac operators.

First we recall some general facts on decompositions. Let U and V be
closed linear subspaces of a Banach space X. Recall that X = U ⊕ V means
that for every x ∈ X there exist unique elements u ∈ U and v ∈ V such
that x = u + v. An equivalent way to state this is that U + V = X and
U ∩ V = ∅. It is well known that this algebraic property is equivalent to the
following topological one: there exists a bounded projection P on X such that
R(P ) = U and N(P ) = R(I − P ) = V.

If X is a Hilbert space and U and V are orthogonal subspaces satisfying
X = U ⊕ V, we write X = U ⊕⊥ V.

The following result follows from elementary Hilbert space theory.

Proposition 3.5. Let H1 and H2 be Hilbert spaces, and let C : H1 →H2 be
closed and densely defined. Then

H1 = N(C)⊕⊥ R(C∗), H2 = N(C∗)⊕⊥ R(C).

Proof. The second decomposition is trivial. Since C∗∗ = C, the first one fol-
lows immediately. �

Now we return to the setting of this chapter and prove a useful decomposi-
tion of the Hilbert spaces H and H. In the unperturbed case where B1 and B2

are the identity operators on H and H, the result follows immediately from
Proposition 3.5, and the decompositions are orthogonal. It is remarkable that
the result remains valid for general B1 and B2. However, in this perturbed
case the decompositions are not orthogonal in general.

Proposition 3.6 (Hodge decomposition). The following decompositions
hold: {

H = N(V )⊕ R(V ∗B),
H = N(V ∗B)⊕ R(V ).

(3.4)

As a consequence,

H = N(TB)⊕ R(V̂ )⊕ R(V̂ ∗B). (3.5)
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The proof relies on the following lemma. For a subset U of a Banach space
X we let U⊥ ⊆ X∗ denote the annihilator of U, defined by

U⊥ := {x∗ ∈ X∗ : 〈u, x∗〉 = 0 ∀u ∈ U}.

Lemma 3.7. Let U and V be closed subspaces of a Banach space X. Then
X = U ⊕ V if the following two estimates hold:{

‖u‖ . ‖u+ v‖, u ∈ U , v ∈ V,
‖u∗‖ . ‖u∗ + v∗‖, u∗ ∈ U⊥, v∗ ∈ V⊥. (3.6)

Proof. Observe that (3.6) immediately implies that{
‖u‖+ ‖v‖ . ‖u+ v‖, u ∈ U , v ∈ V,
‖u∗‖+ ‖v∗‖ . ‖u∗ + v∗‖, u∗ ∈ U⊥, v∗ ∈ V⊥. (3.7)

The first inequality in (3.7) implies that for x ∈ U∩V we have ‖x‖+‖−x‖ . 0,
hence ‖x‖ = 0. This shows that U ∩ V = {0}.

By the same argument, the second inequality in (3.7) implies that U⊥ ∩
V⊥ = {0}. Since (U+V)⊥ = U⊥∩V⊥, the Hahn-Banach theorem implies that
U + V is dense in X.

It remains to show U + V is closed. Take un ∈ U and vn ∈ V such that
(un + vn)n is a Cauchy sequence in X. The first inequality in (3.7) implies
that (un)n and (vn)n are Cauchy sequences as well. Since U and V are closed,
it follows that limn→∞ un + vn ∈ U + V, hence U + V is closed. �

Proof (of Proposition 3.6). It is clear that (3.4) implies (3.5).
To prove the first decomposition in (3.4), we apply Lemma 3.7. In view of

Proposition 3.5 it suffices to show that{
‖V ∗Bu‖ . ‖V ∗Bu+ v‖, u ∈ D(V ∗B), v ∈ N(V ),
‖V ∗u‖ . ‖V ∗u+ v‖, u ∈ D(V ∗), v ∈ N(VB). (3.8)

For u ∈ D(V ∗B) and v ∈ N(V ) we obtain, using the coercivity of B1 on R(V ∗),

‖V ∗Bu‖2 . ‖V ∗B2u‖2 . Re [B1V
∗B2u, V

∗B2u]
= Re [V ∗Bu+ v, V ∗B2u] . ‖V ∗Bu+ v‖ ‖V ∗Bu‖.

On the other hand, since N(VB) = N(V B∗1) by Remark 3.2, for u ∈ D(V ∗)
and v ∈ N(VB) we obtain

‖V ∗u‖2 . Re [B1V
∗u, V ∗u] = Re [B1V

∗u, V ∗u+ v] . ‖V ∗u‖ ‖V ∗u+ v‖.

This proves the first decomposition in (3.4).
We argue similarly to prove the second decomposition in (3.4). It suffices

to show that{
‖V u‖ . ‖V u+ v‖, u ∈ D(V ), v ∈ N(V ∗B),
‖VBu‖ . ‖VBu+ v‖, u ∈ D(VB), v ∈ N(V ∗). (3.9)
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For u ∈ D(V ) and v ∈ N(V ∗B) = N(V ∗B2) we obtain

‖V u‖2 . Re [B∗2V u, V u] = Re [B∗2V u, V u+ v] . ‖V u‖ ‖V u+ v‖,

whereas, for u ∈ D(VB) and v ∈ N(V ∗),

‖VBu‖2 . ‖V B∗1u‖2 . Re [B∗2V B
∗
1u, V B

∗
1u]

= Re [VBu+ v, V B∗1u] . ‖VBu+ v‖ ‖VBu‖.

This proves (3.9), hence the proof is complete. �

3.3 Bisectoriality of Hodge-Dirac operators

Our next aim is to show that TB is bisectorial on H . For this purpose we
need the following lemma.

Lemma 3.8. For every h ∈ R(V̂ ∗B) there exists a unique g ∈ R(V̂ ∗B̂2) satis-
fying h = B̂1g.

Proof. Take un ∈ D(V̂ ∗B̂2) such that B̂1V̂
∗B̂2un converges to h. Then

‖V̂ ∗B̂2(un − um)‖2 . Re [B̂1V̂
∗B̂2(un − um), V̂ ∗B̂2(un − um)]

≤ ‖B̂1V̂
∗B̂2(un − um)‖ ‖V̂ ∗B̂2(un − um)‖,

hence ‖V̂ ∗B̂2(un − um)‖ . ‖B̂1V̂
∗B̂2(un − um)‖. We infer that V̂ ∗B̂2un con-

verges to some g ∈H , and h = B̂1g.

To show uniqueness, suppose that g, g′ ∈ R(V̂ ∗B̂2) are such that B̂1g =
B̂1g

′. Then

‖g − g′‖2 . Re [B̂1(g − g′), g − g′] = 0,

hence g = g′. �

Now we can state the main result of this section.

Proposition 3.9. The operator TB is bisectorial on H . Moreover, ω(TB) ≤
1
2 (ωc(B1) + ωc(B2)).

Proof. Let ω ∈ ( 1
2 (ωc(B1) + ωc(B2)), 1

2π), let u ∈ D(TB), let z 6∈ Σω, and put
f := (I + zTB)u. We use Proposition 3.6 to write

u = u0 + u1 + u2, f = f0 + f1 + f2 ∈ N(TB)⊕ R(V̂ ∗B)⊕ R(V̂ ).

Since f = u0 + u1 + u2 + zV̂ u1 + zV̂ ∗Bu2, it follows that
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f0 = u0, f1 = u1 + zV̂ ∗Bu2, f2 = u2 + zV̂ u1.

Using Lemma 3.8 we may write u1 = B̂1ũ1 and f1 = B̂1f̃1 for certain ũ1, f̃1 ∈
R(V̂ ∗B̂2). Consequently, since B̂1 is coercive on R(V̂ ∗),

f̃1 = ũ1 + zV̂ ∗B̂2u2.

It follows from these identities that

Λ := −z̄[ũ1, B̂1ũ1] + z[B̂2u2, u2] = −z̄[f̃1, B̂1ũ1] + z[B̂2u2, f2] (3.10)

On the other hand, writing

θ1 := arg[ũ1, B̂1ũ1], θ2 := arg[B̂2u2, u2], µ := arg z,

we obtain

|Λ| ≥ Im (e−
i
2 (θ1+θ2)Λ)

= Im
(
e−

i
2 (θ1+θ2)|z|

(
− ei(θ1−µ)|[ũ1, B̂1ũ1]|+ ei(θ2+µ)|[B̂2u2, u2]|

))
= |z|Im

(
− ei(

1
2 θ1−

1
2 θ2−µ)|[ũ1, B̂1ũ1]|+ ei(−

1
2 θ1+

1
2 θ2+µ)|[B̂2u2, u2]|

)
= |z| sin(− 1

2θ1 + 1
2θ2 + µ)

(
|[ũ1, B̂1ũ1]|+ |[B̂2u2, u2]|

)
.

(3.11)
Assuming that Im z > 0 (the case Im z < 0 can be treated in the same way),
we use the fact that | 12θ1 −

1
2θ2| < ω to obtain

|z| sin(− 1
2θ1 + 1

2θ2 + µ) ≥ |z| sin(µ− ω) = dist(z,Σω). (3.12)

Combining (3.10), (3.11), and (3.12), we arrive at

| − z̄[f̃1, B̂1ũ1] + z[B̂2u2, f2]| ≥ dist(z,Σω)
(
|[ũ1, B̂1ũ1]|+ |[B̂2u2, u2]|

)
.

Since ũ1 ∈ R(V̂ ∗) and u2 ∈ R(V̂ ), this implies that

‖ũ1‖2 + ‖u2‖2 . |[ũ1, B̂1ũ1]|+ |[B̂2u2, u2]|

.
|z|

dist(z,Σω)

(
‖f̃1‖ ‖ũ1‖+ ‖u2‖ ‖f2‖

)
.

Setting u2 = 0 we obtain

‖u1‖ h ‖ũ1‖ .
|z|

dist(z,Σω)
‖f̃1‖ h

|z|
dist(z,Σω)

‖f1‖,

and similarly, putting ũ1 = 0,
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‖u2‖ .
|z|

dist(z,Σω)
‖f2‖.

Since the set { |z|
dist(z,Σω)

: z 6∈ Σω′
}

is bounded for each ω′ ∈ (ω, 1
2π), the decomposition from Proposition 3.6

allows us to obtain:

‖u‖ h ‖u0‖+ ‖u1‖+ ‖u2‖ . ‖f0‖+ ‖f1‖+ ‖f2‖ h ‖f‖.

This estimate shows that I + zTB is injective and has closed range. Since
(I + zTB)∗ = (I + z̄T ∗B) and T ∗B is of the same form as TB (which can be
seen by reversing the roles of H and H and replacing V by V ∗), we find that
I + z̄T ∗B is injective as well, hence I + zTB has dense range. Combining this
with the resolvent estimate ‖u‖ . ‖f‖, we obtain that TB is bisectorial of
angle ω. �

3.4 Second order operators

We continue with the setup of the previous section, but specialise to the case
B1 := IH and we rename B2 =: B. In the previous section we have shown
that Hodge-Dirac operator

TB :=
[

0 V ∗B
V 0

]
,

is bisectorial with ω(TB) ≤ 1
2ωc(B). Combining this with Proposition 5.29 we

obtain that the operator

T 2
B :=

[
V ∗BV 0

0 V V ∗B

]
,

is sectorial with ω+(T 2
B) ≤ ωc(B). By restriction we obtain that the operators

A := V ∗BV : D(A) ⊆ H → H, A := V V ∗B : D(A) ⊆ H → H,

are sectorial on H and H respectively of angle ω(A) = ω(A) = ωc(B) < 1
2π.

Consequently, the operators −A and −A generate bounded analytic semi-
groups on Σ+

θ for all θ ∈ (0, ωc(B)). Concerning A even more can be said:

Proposition 3.10. The operator −A generates an analytic C0-semigroup on
H which is contractive on Σ+

1
2π−ωc(B)

.

Proof. See [141, Theorem 1.53]. �

Proposition 3.11. The operator A has a bounded H∞-calculus and

ω+
H∞(A) = ω+(A) <

1
2
π.

Proof. This follows from Theorem 5.50. �
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3.5 Kato’s square root problem and functional calculus

Associated with the perturbed Hodge-Dirac operators considered in this chap-
ter is the following square root problem: do we have equality of domains
D(
√
A) = D(V ) and equivalence of norms ‖

√
Ah‖ h ‖V h‖? In this section we

will show that this property can be characterised by means of the H∞-calculus
for the operator A.

Although the operator A does not necessarily have a bounded functional
calculus, we always have the following square function estimate.

Proposition 3.12. For ψ ∈ H∞0 (Σ+
θ ) with θ ∈ (ωc(B), π) we have

‖
√
Ah‖ h

(∫ ∞
0

‖ψ(tA)V h‖2 dt
t

)1/2

, h ∈ D(A).

Proof. Take ϕ̃ ∈ H∞0 (Σ+
2θ) and define ϕ ∈ H∞0 (Σθ) by ϕ(z) := ϕ̃(z2). We

obtain

‖
√
Ah‖2 h

∫ ∞
0

‖ϕ̃(tA)
√
Ah‖2 dt

t
(Proposition 3.11)

=
∫ ∞

0

∥∥ϕ̃(tT 2
B)
√
T 2
B

[
h
0

] ∥∥2 dt

t

h
∫ ∞

0

∥∥ϕ(tTB)
√
T 2
B

[
h
0

] ∥∥2 dt

t
(Proposition 5.32)

=
∫ ∞

0

∥∥ sgn(tTB)ϕ(tTB)TB

[
h
0

] ∥∥2 dt

t
(Proposition 5.30)

h
∫ ∞

0

∥∥ϕ(tTB)TB

[
h
0

] ∥∥2 dt

t
(Corollary 5.39)

=
∫ ∞

0

∥∥ϕ(tTB)
[

0
V h

] ∥∥2 dt

t

h
∫ ∞

0

∥∥ϕ̃(tT 2
B)
[

0
V h

] ∥∥2 dt

t
(Proposition 5.32)

h
∫ ∞

0

‖ϕ̃(tA)V h‖2 dt
t
.

The extension to arbitrary ψ ∈ H∞0 (Σ+
θ ) follows from Corollary 5.39. �

The next result is a variation of [9, Theorem 10.1]. We write A∗ := V V ∗B∗

and we let S∗ denote the semigroup generated by −A∗.

Theorem 3.13. The following assertions are equivalent:

(1) D(
√
A) ⊆ D(V ) with ‖

√
Ah‖ & ‖V h‖, h ∈ D(

√
A);

(2) A satisfies a square function estimate on R(V ):(∫ ∞
0

‖tAS(t)u‖2 dt
t

)1/2

& ‖u‖;
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(3) D(
√
A∗) ⊇ D(V ) with ‖

√
A∗h‖ . ‖V h‖, h ∈ D(V );

(4) A∗ satisfies a square function estimate on R(V ):(∫ ∞
0

‖tA∗S∗(t)u‖2
dt

t

)1/2

. ‖u‖.

As a consequence, the following assertions are equivalent:

(1′) D(
√
A) = D(V ) with equivalence of norms ‖

√
Ah‖ h ‖V h‖;

(2′) A admits a bounded H∞-functional calculus on R(V );
(3′) D(

√
A∗) = D(V ) with equivalence of norms ‖

√
A∗h‖ h ‖V h‖;

(4′) A∗ admits a bounded H∞-functional calculus on R(V ).

Proof. The equivalences (1)⇔ (2) and (3)⇔ (4) follow from Proposition 3.12
with ψ(z) = ze−z, taking into account that D(A) is a core for both D(

√
A)

and D(V ).
We will now show that (1) implies (3). Taking Proposition 5.20 into ac-

count, and using and the fact that D(A) is a core for D(
√
A), we infer that

the collection of all f̃ ∈ H of the form f̃ = f̃0 +
√
Af with f̃0 ∈ N(

√
A) and

f1 ∈ D(A) is dense in H. Using that f̃0 ∈ N(
√
A) and ‖

√
Af‖ . ‖f̃‖, we

obtain for any g ∈ D(A∗),

‖
√
A∗g‖ = sup

‖f̃0+
√
Af‖≤1

|〈
√
A∗g, f̃0 +

√
Af〉|

. sup
‖
√
Af‖≤1

|〈
√
A∗g,

√
Af〉| . sup

‖V f‖≤1

|〈A∗g, f〉|

= sup
‖V f‖≤1

|〈B∗V g, V f〉| ≤ sup
‖V f‖≤1

‖B‖ ‖V g‖ ‖V f‖

= ‖B‖ ‖V g‖.

Since D(A∗) is a core for D(
√
A∗) and D(V ), we obtain (3).

The reverse implication (3) ⇒ (1) is obtained by reversing the roles of A
and A∗.

The equivalences (1′)⇔ (2′) and (3′) ⇔ (4′) follow from Proposition 3.12
and Theorem 5.40, and the equivalence of (1′) and (3′) is obtained by applying
(1) ⇔ (3) to both A and A∗. �

It is possible to give additional equivalent conditions in terms of the oper-
ator A.

Proposition 3.14. The assertions (1)–(4) of Theorem 3.13 are equivalent to

(5) D(
√
A) ⊇ D(V ∗B) with ‖

√
Au‖ . ‖V ∗Bu‖, u ∈ D(V ∗B);

(6) D(
√
A∗) ⊇ D(V ∗B∗) with ‖

√
A∗u‖ . ‖V ∗B∗u‖, u ∈ D(V ∗B∗).

Similarly, the conditions (1′)–(4′) of Theorem 3.13 are equivalent to

(5′) D(
√
A) = D(V ∗B) with ‖

√
Au‖ h ‖V ∗Bu‖, u ∈ D(V ∗B).
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(6′) D(
√
A∗) = D(V ∗B) with ‖

√
A∗u‖ h ‖V ∗B∗u‖, u ∈ D(V ∗B∗).

Proof. To see that (1) implies (5), note that for h ∈ D(A) we have

‖(V ∗B)V h‖ = ‖Ah‖ & ‖V
√
Ah‖ = ‖

√
AV h‖.

Since V (D(A)) is a core for both D(V ∗B) and D(
√
A), (5) follows. The converse

implication that (5) implies (1) is proved similarly.
Replacing B by B∗, we obtain the equivalence of (3) and (6). The equiv-

alence of the primed statements follows from the same argument. �

Remark 3.15. One might ask whether the equivalent conditions in the theorem
above are always fulfilled. This is not the case. A counterexample has been
constructed by McIntosh [121] by gluing together finite dimensional examples
in a clever way.

One might wonder if the assertions are always fulfilled when we rule out
such “artificial” counterexamples and restrict ourselves to a class of more
natural and physically meaningful operators such as in the following example.

Example 3.16 (Kato’s square root problem).
Consider the following situation: let H = L2(Rn), let H = L2(Rn; Rn), let

V := ∇ : W 1,2(Rn) ⊆ H → H be the gradient, and let b ∈ L∞(Rn;Mn(C))
be a matrix-valued function satisfying [b(x)ξ, ξ] ≥ κ|ξ|2 for some κ > 0 and all
x ∈ Rn and ξ ∈ Rn. Consider the multiplication operator B ∈ L(L2(Rn; Rn))
defined by (Bu)(x) := b(x)u(x) for x ∈ Rn.

In this case A := V ∗BV = −∇ · B∇ is a second order elliptic differential
operator with L∞-coefficients. The question whether

D(
√
A) = D(V )

is the famous Kato square root problem, which remained unsolved for several
decades. In [8] it has been solved positively by Auscher, Hofmann, Lacey,
McIntosh, and Tchamitchian.

3.6 Notes

As mentioned before, the operator theoretic framework described in this chap-
ter has been developed by Axelsson, Keith, and McIntosh [12]. Some of the
ideas can be traced back to earlier papers such as [9, 10]. It is shown in [12]
that this framework provides a unified view on many results in harmonic anal-
ysis, including the Cauchy integral on Lipschitz curves and surfaces and the
Kato square root problem. Of course, the actual proofs of these results involve
deep harmonic analysis.

We have chosen to present a slightly less general framework compared to
[12], in order to make the application to elliptic operators in Wiener spaces
more streamlined.
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The proof of Proposition 3.9 is taken from [12]. Theorem 3.13 is a variation
of a result in [9]. The proof that we present here, based on Proposition 3.12,
has been demonstrated to us by McIntosh.
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Lp-Theory for Elliptic Operators on Wiener
Spaces

In this chapter we consider a class of elliptic operators on Wiener spaces, which
contains the Ornstein-Uhlenbeck operators considered in Chapter 2. These
operators will be studied in an Lp-setting. Our first main result (Theorem
4.37) provides necessary and sufficient conditions for the boundedness of the
Riesz transforms associated with these operators. Our second main result
(Theorem 4.42) gives a characterisation of their Lp-domains.

4.1 Elliptic operators on Wiener spaces

We begin by introducing a class of elliptic operators on Wiener spaces.

The setup

Let us present the setup in which we will work throughout this chapter. This
setup is an extension of the framework considered in Chapter 3. Our data are
the following:

• (E,H, µ) is an abstract Wiener space.
• H is a real separable Hilbert space.
• V is a closed and densely defined linear operator from H into H.
• B is a bounded operator on H which is coercive on R(V ), i.e., there exists

κ > 0 such that

[Bu, u] ≥ κ‖u‖2, u ∈ R(V ). (4.1)

We have seen in Chapter 3 that it is natural to introduce the first order
operator

TB :=
[

0 V ∗B
V 0

]
on H := H ⊕H,
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and the second order operators

A := V ∗BV on H, A := V V ∗B on H.

The operators −A and −A are the generators of bounded analytic C0-
semigroups

(S(t))t≥0 ⊆ L(H), (S(t))t≥0 ⊆ L(H).

Having the extra structure of an abstract Wiener space and a gradient
DV , it is natural to introduce additional operators. Fix 1 < p <∞. We have
seen in Theorem 1.33 that the gradient

DV : Dp(DV ) ⊆ Lp(µ)→ Lp(µ;H)

is a closed and densely defined operator. We let D∗V denote the adjoint of the
operator DV : Dp′(DV ) ⊆ Lp′(µ)→ Lp

′
(µ;H), where 1

p + 1
p′ = 1, thus

D∗V : Dp(D∗V ) ⊆ Lp(µ;H)→ Lp(µ).

We consider the first order operator

ΠB :=
[

0 D∗VB
DV 0

]
on the space

Lp(µ) := Lp(µ)⊕ Lp(µ;H),

and the second order operators

L := D∗VBDV on Lp(µ), L := DVD
∗
VB on Lp(µ;H).

For p = 2, this construction is a special case of the construction in Chapter 3.
The results presented there imply that the operator ΠB is bisectorial and the
operators L and L are sectorial. For 1 < p <∞, p 6= 2, the situation is more
delicate. A detailed analysis of this situation is the topic of the next section,
where Lp-(bi)sectoriality results will be proved. For the moment we have the
following result for the first order operator ΠB .

Lemma 4.1. Let 1 < p < ∞. The operators D∗VB : D(D∗VB) ⊆ Lp(µ;H) →
Lp(µ) and B∗DV : D(B∗DV ) ⊆ Lp

′
(µ) → Lp

′
(µ;H) are closed and densely

defined operators satisfying

(D∗VB)∗ = B∗DV , D∗VB = (B∗DV )∗.

As a consequence, the operator ΠB : D(ΠB) ⊆ Lp(µ) → Lp(µ) is closed and
densely defined. Its adjoint is the closed and densely defined operator on Lp′(µ)
given by

Π∗B =
[

0 D∗V
B∗DV 0

]
.
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Proof. Since (D∗V )∗ = DV and ‖B∗DV f‖p h ‖DV f‖p for f ∈ Dp(DV ), the
result is a consequence of Proposition 3.4. �

In the remainder of this section we give a rigourous Lp-definition of the
second order operators L and L.

The operator L in Lp(µ)

In L2(µ), it follows from the theory presented in Section 3.4 that the operator
L := D∗VBDV is sectorial of angle ω+(L) = ωc(B). In the present section
we will rigorously define L as a closed and densely defined operator acting in
Lp(µ), for 1 < p <∞.

Lemma 4.2. Identifying H with its image φ(H) in L2(µ), A is the part of L
in H.

Proof. Let h ∈ D(A). Then h ∈ D(V ) and BV h ∈ D(V ∗). It follows that
φh ∈ D(DV ) and BDV φh = 1 ⊗ BV h. Lemma 1.32 implies that BDV φh ∈
D(D∗V ) and D∗VBDV φh = 1⊗Ah. Denoting the part of L in H by LH for the
moment, this argument shows that A ⊆ LH .

On the other hand, if φh ∈ D(LH), then φh ∈ D(L) and Lφh = φh′ for
some h′ ∈ H. Hence for all g ∈ D(V ) we obtain

[BV h, V g] = [BDV φh, DV φg] = [Lφh, φg] = [φh′ , φg] = [h′, g].

It follows that h ∈ D(A) and [Ah, g] = [h′, g]. This shows that Ah = h′, and
we have proved the opposite inclusion A ⊇ LH . �

The next result identifies P as the second quantisation of S.

Theorem 4.3. For all t ≥ 0 we have P (t) = Γ (S(t)).

Proof. We recall from Lemma 4.2 that P (t)φh = S(t)h for all h ∈ H.
First we check that for all h ∈ D(A), the functions Eh ∈ L2(µ) are in

the domains of L and L̃, where −L̃ is the generator of Γ (S), and that both
generators agree on those functions. Using (1.16) and Lemma 1.32 we obtain

LEh = D∗VBDV Eh

= D∗V (Eh ⊗BV h)
= EhφV ∗BV h − [BV h, V h]Eh
= (φAh − [Ah, h])Eh,

while on the other hand, using (1.6) and (1.12) combined with a simple ap-
proximation argument, we have
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L̃Eh = lim
t↓0

1
t (ES(t)h − Eh)

= Eh
d

dt

∣∣∣
t=0

(
φS(t)h −

1
2
‖S(t)h‖2

)
= (φAh − [Ah, h])Eh.

The set lin{Eh : h ∈ D(A)} is dense in L2(µ) and invariant under the semi-
group Γ (S). As a consequence, this set is a core for D(L̃). It follows that
D(L̃) ⊆ D(L). Since both −L̃ and −L are generators this implies D(L̃) = D(L)
and therefore L̃ = L. �

So far we have considered P as a C0-semigroup in L2(µ). Having identified
P as a second quantised semigroup on L2(µ), we are in a position to prove
that P extends to the spaces Lp(µ).

Theorem 4.4. For 1 ≤ p < ∞, the semigroup P extends to a C0-semigroup
of positive contractions on Lp(µ) satisfying ‖P (t)f‖∞ ≤ ‖f‖∞ for f ∈ L∞(µ).
The measure µ is an invariant measure for P, i.e.,∫

E

P (t)f dµ =
∫
E

f dµ, f ∈ Lp(µ), t ≥ 0.

For 1 < p <∞, P is an analytic C0-contraction semigroup on Lp(µ).

Proof. This follows immediately from Proposition 1.25 and Theorem 1.26. �

Remark 4.5. The precise angle of sectoriality ω+(L) in Lp(µ) has been ob-
tained in the case of Ornstein-Uhlenbeck semigroups in [28, 108]. The argu-
ment also works in the more general setting considered here.

Definition 4.6. On Lp(µ) we define the operator L as the negative generator
of the semigroup P .

We finish this section with some algebraic properties of the operator L.

Lemma 4.7. For all 1 < p < ∞, FC∞b (E; D(A)) is a P -invariant core for
Dp(L). Moreover, for f ∈ FC∞b (E; D(A)) of the form f = ϕ(φh1 , . . . , φhn),
we have the explicit expression

Lf(x) = −
n∑

j,k=1

[BV hj , V hk]∂j∂kϕ(φh1 , . . . , φhn)

+
n∑
j=1

∂jϕ(φh1 , . . . , φhn) · φAhj .
(4.2)

Furthermore, for f, g ∈ FC∞b (E; D(A)) and ψ ∈ C∞b (R) we have

(1) (Product rule) fg ∈ FC∞b (E; D(A)) and

L(fg) = fLg + gLf − [(B +B∗)DV f,DV g];
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(2) (Chain rule) ψ ◦ f ∈ FC∞b (E; D(A)) and

L(ψ ◦ f) = (ψ′ ◦ f)Lf − (ψ′′ ◦ f)[BDV f,DV f ].

Proof. First we show that FC∞b (E; D(A)) is contained in Dp(L); we thank
Vladimir Bogachev for pointing out an argument which simplifies our orinig-
inal proof. Pick a function f ∈ FC∞b (E; D(A)) and notice that f ∈ D(L) ∩
Lp(µ). The space Lp(µ) being reflexive, by a standard result from semigroup
theory (cf. [22]) it suffices to show that

lim
t↓0

1
t
‖P (t)f − f‖ <∞.

Using that L = D∗VBDV in L2(µ), an explicit calculation using Lemma 1.32
shows that Lf ∈ L2(µ) ∩ Lp(µ). Moreover, in L2(µ) we have the identity

1
t
(P (t)f − f) =

1
t

∫ t

0

P (s)Lf ds.

Since Lf ∈ Lp(µ), the right-hand side can be interpreted as a Bochner integral
in Lp(µ), which for 0 < t ≤ 1 can be estimated in Lp(µ) by∥∥∥1

t

∫ t

0

P (s)Lf ds
∥∥∥ ≤ ‖Lf‖.

This gives the desired bound for the limes superior.
To show that FC∞b (E; D(A)) is invariant under P, we take f of the form

f = ϕ(φh1 , . . . , φhn),

with ϕ ∈ C∞b (Rn) and h1, . . . , hn ∈ D(A). Let R(t) :=
√
I − S∗(t)S(t). By

Mehler’s formula, for µ-almost all x ∈ E we have

P (t)f(x) =
∫
E

ϕ(φS(t)h1(x) + φR(t)h1(y), . . .

. . . , φS(t)hn(x) + φR(t)hn(y)) dµ(y)
= ψt(φS(t)h1(x), . . . , φS(t)hn(x)),

(4.3)

where

ψt(ξ1, . . . , ξn) =
∫
E

ϕ(ξ1 + φR(t)h1(y), . . . , ξn + φR(t)hn(y)) dµ(y).

Since ψt ∈ C∞b (Rn) and S(t)hj ∈ D(A) for j = 1, . . . , n, it follows that the
subspace FC∞b (E; D(A)) is invariant under P. Since it is dense in Lp(µ) and
contained in Dp(L), it is a core for Dp(L).

The expression (4.2) and the identities (1) and (2) follow by direct com-
putation, using the identity L = D∗VBDV and Lemma 1.32. �

Remark 4.8. The same proof shows that FC∞b (E; D(Ak)) is a P -invariant core
for Dp(L) for every k ≥ 1.



70 4 Lp-Theory for Elliptic Operators on Wiener Spaces

The operator L in Lp(µ;H)

Having defined L as an operator acting on Lp(µ), we will now turn to the
operator L. The following result follows from the theory presented in Section
3.4.

Proposition 4.9. The operator L is sectorial on L2(µ;H) of angle ω+(L) ≤
ωc(B).

As a consequence, −L generates a bounded analytic C0-semigroup on
L2(µ;H). In what follows we denote this semigroup by P . Our next aim is to
give a meaning to the operator L on the spaces Rp(DV ), 1 < p < ∞, where
the closure is taken in Lp(µ;H). For this purpose, we need some a couple of
lemmas.

Lemma 4.10. For all u ∈ D(A) we have 1⊗ u ∈ D(L) and

L(1⊗ u) = 1⊗Au.

Proof. We have

L(1⊗ u) = DVD
∗
V (1⊗Bu) = DV (φV ∗Bu) = 1⊗ V V ∗Bu = 1⊗Au.

�

Lemma 4.11. For all h ∈ D(V ) and t ≥ 0 we have S(t)h ∈ D(V ) and

V S(t)h = S(t)V h.

Proof. We may assume that t > 0.
First let g ∈ D(A2). Since Ag ∈ D(A) ⊆ D(V ) we find that V g ∈ D(A) and

AV g = V Ag. For λ > 0 it follows that (I + λA)V g = V (I + λA)g. Applying
this to g = (I + λA)−1h with h ∈ D(A) we obtain

V (I + λA)−1h = (I + λA)−1V h.

Taking λ = t
n and repeating this argument n times we obtain, for all h ∈ D(A),

V (I + t
nA)−nh = (I + t

nA)−nV h.

Taking limits n→∞ and using the closedness of V , we obtain S(t)h ∈ D(V )
and

V S(t)h = S(t)V h.

We are still assuming that h ∈ D(A). However, this assumption may now be
removed by recalling the fact that D(A) is a core for D(V ). �

Lemma 4.12. For all t ≥ 0 we have S(t)R(V ) ⊆ R(V ). Moreover, the part of
A in R(V ) is injective.
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Proof. The first assertion follows from Lemma 4.11. Suppose that Au =
V V ∗Bu = 0 for some u belonging to the domain of the part of A in R(V ). Then
‖V ∗Bu‖2 = 0, so Bu ∈ N(V ∗). Thus [Bu, V h] = 0 for all h ∈ D(V ). Since
u ∈ R(V ) it follows that [Bu, u] = 0, and therefore u = 0 by the coercivity of
B on R(V ). �

Next we show that the semigroups P and P ⊗ S agree on R(DV ). We will
use the following lemma.

Lemma 4.13. For 1 < p <∞, FC∞b (E; D(A)) is a core for Dp(DV ).

Proof. First let f = ϕ(φh1 , . . . , φhn) with ϕ ∈ C1
b(Rn) and h1, . . . , hn ∈ D(V ).

Choose sequences (hjk)k≥1 in D(A) with hjk → hj in D(V ) as k →∞. Then
fk → f in Lp(µ) andDV fk → DV f in Lp(µ;H), where fk = ϕ(φh1k , . . . .φhnk).
Since FC1

b(E; D(V )) is a core for Dp(DV ), this proves that FC1
b(E; D(A)) is

a core for Dp(DV ). Now a standard mollifier argument, convolving ϕ with a
smooth function of compact support, shows that FC∞b (E; D(A)) is a core for
Dp(DV ). �

The next result is well known in the context of Ornstein-Uhlenbeck semi-
groups; see, e.g., [32, Lemma 2.7], [110, Proposition 3.5].

Theorem 4.14. For all 1 < p < ∞, the semigroup P ⊗ S restricts to a
bounded analytic C0-semigroup on Rp(DV ). For f ∈ Dp(DV ) and t ≥ 0 we
have P (t)f ∈ Dp(DV ) and

DV P (t)f = (P (t)⊗ S(t))DV f.

Proof. First we show that for all f ∈ Dp(DV ) we have P (t)f ∈ Dp(DV )
and DV P (t)f = (P (t) ⊗ S(t))DV f. Since DV is closed and FC∞b (E; D(A))
is a core for Dp(DV ) by Lemma 4.13, it suffices to check this for functions
f ∈ FC∞b (E; D(A)).

We use the notations of Lemma 4.7. By (4.3) and Lemma 4.11, for func-
tions f = ϕ(φh1 , . . . , φhn) we have, for µ-almost all x ∈ E,

DV P (t)f(x) =
n∑
j=1

∂jψt(φS(t)h1(x), . . . , φS(t)hn(x))⊗ V S(t)hj

=
n∑
j=1

∫
E

∂jϕ(φS(t)h1(x) + φR(t)h1(y), . . .

. . . , φS(t)hn(x) + φR(t)hn(y)) dµ(y)⊗ S(t)V hj
= (P (t)⊗ S(t))DV f(x).

This identity shows that P (t)⊗S maps Rp(DV ) into itself, and therefore P⊗S
restricts to a bounded C0-semigroup on Rp(DV ). The invariance of Rp(DV )
under the operators P (z) ⊗ S(z), where z ∈ C is in the sector of bounded
analyticity of P , follows by uniqueness of analytic continuation (consider the
quotient mapping from Lp(µ;H) to Lp(µ;H)/Rp(DV )). �
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In the next result we return to the L2-setting and show that the semigroups
P ⊗ S and P on L2(µ;H) agree on R(DV ).

Theorem 4.15. Both P and P⊗S restrict to bounded analytic C0-semigroups
on R(DV ), and their restrictions coincide:

P (t)F = P (t)⊗ S(t)F, F ∈ R(DV ).

Proof. The invariance of R(DV ) under P ⊗ S follows from the previous theo-
rem. Let us write −N for the generator of P⊗S on R(DV ). From V (D(A2)) ⊆
D(A) (cf. the proof of Lemma 4.11) and FC∞b (E; D(A2)) ⊗ D(A) ⊆ D(L) ⊗
D(A) we see that the subspace U := {DV f : f ∈ FC∞b (E; D(A2))} is con-
tained in D(N). This subspace is dense in R(DV ) since FC∞b (E; D(A2)) is a
core for D(L) (by Lemma 4.7 and the remark following it) and D(L) is a core
for D(DV ). Since (P ⊗ S)U ⊆ U by Theorem 4.14, it follows that U is a core
for D(N).

For functions f ∈ FC∞b (E; D(A2)) we obtain

NDV f = DV Lf = LDV f.

The first identity follows from Theorem 4.14 and the second from a direct
computation. ThusN = L on the core U of D(N). It follows that D(N) ⊆ D(L)
and N = L on D(N). Let λ > 0. Multiplying the identity λ + N = λ + L
from the right with (λ + N)−1 and from the left with (λ + L)−1, we obtain
(λ+N)−1 = (λ+L)−1 on R(DV ). In particular, (λ+L)−1 maps R(DV ) into
itself. As in Lemma 4.11 it follows that P leaves R(DV ) invariant and that
the restriction of P to R(DV ) equals the semigroup generated by −N , which
is P ⊗ S|R(DV )

. �

Definition 4.16. Let 1 < p <∞. On Rp(DV ) we define P := P ⊗ S|Rp(DV )
.

The negative generator of P is denoted by L.

By Theorem 4.15, for p = 2 this definition is consistent with the one given
after Proposition 4.9.

We close this section with some consequences of the theory presented in
Chapter 5.

Proposition 4.17. Let 1 < p <∞. The operator L is γ-sectorial and admits
a bounded H∞-calculus on Lp(µ) of angle ω+

H∞(L) = ω+
γ (L) < 1

2π. Moreover,

(1) The family {P (t) : t ≥ 0} is γ-bounded in L(Lp(µ));
(2) The family {P (t) : t ≥ 0} is γ-bounded in L(Rp(DV )).

Proof. Since −L generates an analytic C0-semigroup of positive contractions
on Lp(µ), the first part follows from Theorem 5.53. Assertion (1) follows from
Lemma 5.46, and assertion (2) follows by combining (1) with the identity
P = P ⊗ S and Proposition 5.6. �
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4.2 Randomised gradient bounds and LPS inequalities

In this section we will prove randomised gradient bounds and Littlewood-
Paley-Stein inequalities for the semigroup P. These results form the core of
the proof of Theorem 4.37, which is an extended version of Theorem 0.1
presented in the introduction.

For functions f ∈ FC∞b (E; D(A)) we consider the Littlewood-Paley-Stein
square functions

H f(x) :=
(∫ ∞

0

‖
√
tDV P (t)f(x)‖2 dt

t

)1/2

, x ∈ E,

G f(x) :=
(∫ ∞

0

‖tDVQ(t)f(x)‖2 dt
t

)1/2

, x ∈ E.

where Q denotes the analytic C0-semigroup generated by −
√
L.

The functions t 7→ DV P (t)f are analytic in a sector containing R+, and
therefore a well-known result of Stein [156] allows us to select a pointwise
version (t, x) 7→ DV P (t)f(x) which is analytic in t for every fixed x. Using
such a version, we see that H f is well defined almost everywhere (but possibly
infinite). The square function Gf is well defined by similar reasoning.

The main results of this section are the following two theorems, which to-
gether imply parts (2) and (3) of Theorem 0.3 announced in the introduction.
Part (1) of Theorem 0.3 is contained in Theorem 4.25.

Theorem 4.18 (Randomised gradient bounds). Let 1 < p < ∞. Then
Dp(L) is a core for Dp(DV ) and the families{√

tDV P (t) : t > 0
}

and
{
tDV (I + t2L)−1 : t > 0

}
are γ-bounded in L(Lp(µ), Lp(µ;H)).

Theorem 4.19 (Littlewood-Paley-Stein inequality). Let 1 < p < ∞.
The following estimate holds for all f ∈ FC∞b (E; D(A)):

‖H f‖p . ‖f‖p.

By Theorem 4.18 the square functions H f and G f are actually well-
defined for arbitrary f ∈ Lp(µ), and by approximation the estimate of Theo-
rem 4.19 extends to all of Lp(µ). Since we do not need these observations we
leave the details to the reader.

For the proofs of both theorems we distinguish between the cases 1 <
p ≤ 2 and 2 < p < ∞. For 1 < p ≤ 2 we show by a direct argument that
H is Lp-bounded and deduce from this that Dp(L) is a core for Dp(DV ).
Theorem 4.18 is then a consequence of Theorem 5.47. For 2 < p <∞ we first
derive Theorem 4.18 from a pointwise gradient bound and a duality argument
involving maximal functions. Since L has a bounded H∞-calculus of angle
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< 1
2π by Proposition 4.17, Theorem 4.19 then follows by an application of

Theorem 5.47.
Both square functions are related by the following inequality. The argu-

ment is taken from [39].

Lemma 4.20. For f ∈ FC∞b (E; D(A)) we have G f ≤H f µ-a.e.

Proof. Using the representation

Q(t)f =
1√
π

∫ ∞
0

e−u√
u
P
( t2

4u
)
f du

and the closedness of DV ,

G 2f(x) =
∫ ∞

0

‖tDVQ(t)f(x)‖2 dt
t

≤ 1
π

∫ ∞
0

(∫ ∞
0

∥∥∥tDV P
( t2

4u
)
f(x)

∥∥∥e−u√
u
du
)2 dt

t
.

Since
∫∞
0

e−u√
u
du =

√
π we may apply Jensen’s inequality to obtain

G 2f(x) ≤ 1√
π

∫ ∞
0

(∫ ∞
0

∥∥∥tDV P
( t2

4u
)
f(x)

∥∥∥2 e−u√
u
du
) dt
t

=
1√
π

∫ ∞
0

(∫ ∞
0

∥∥∥tDV P
( t2

4u
)
f(x)

∥∥∥2 dt

t

)e−u√
u
du

=
2√
π

∫ ∞
0

(∫ ∞
0

∥∥√sDV P (s)f(x)
∥∥2 ds

s

)√
ue−u du

= H 2f(x).

�

The case 1 < p ≤ 2

We begin with some preliminary observations.

Lemma 4.21. For h ∈ D(V ) we have∫ ∞
0

‖S(t)V h‖2 dt ≤ (2κ)−1‖h‖2.

Proof. Let t > 0. Using Lemma 4.11 and the fact that S(t)h ∈ D(A) by
analyticity, we obtain

‖S(t)V h‖2 = ‖V S(t)h‖2 ≤ κ−1[BV S(t)h, V S(t)h]

= κ−1[AS(t)h, S(t)h]

= −(2κ)−1 d

dt
‖S(t)h‖2.
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Hence ∫ ∞
0

‖S(t)V h‖2 dt ≤ (2κ)−1 lim
T→∞

∫ T

0

− d

dt
‖S(t)h‖2 dt

= (2κ)−1
(
‖h‖2 − lim

T→∞
‖S(T )h‖2

)
≤ (2κ)−1‖h‖2.

�

Lemma 4.22. Let f ∈ FC∞b (E; D(A)) and F ∈ FC∞b (E; D(A)) ⊗ D(A) be
such that DV f = (I ⊗ V )F . Then for all 1 < p < ∞ we have H f ∈ Lp(µ)
and ‖H f‖p . ‖F‖p.

Proof. By Proposition 5.6 and Lemma 5.46, the set {P (t) ⊗ I : t ≥ 0} is
γ-bounded in L(Lp(µ;H)). Hence, by Propositions 5.16, 5.15, and Lemma
4.21,

‖H f‖p =
∥∥∥(∫ ∞

0

‖P (t)DV f‖2 dt
)1/2∥∥∥

p

=
∥∥∥(∫ ∞

0

‖(P (t)⊗ I)(I ⊗ S(t))(I ⊗ V )F‖2 dt
)1/2∥∥∥

p

.
∥∥∥(∫ ∞

0

‖(I ⊗ S(t))(I ⊗ V )F‖2 dt
)1/2∥∥∥

p

≤ (2k)−1/2‖F‖p.

�

The following proof is based on a classical argument which goes back to
Stein [156]. The same idea has been applied in the related works [32, 39, 110,
152].

Proof (of Theorem 4.19, 1 < p ≤ 2). First we show that it suffices to prove
the estimate for functions f ∈ FC∞b (E; D(A)) satisfying f ≥ ε for some ε > 0.

Fix f = ϕ(φh1 , . . . , φhk) ∈ FC∞b (E; D(A)) of the usual form. Pick func-
tions mn ∈ C∞b (Rk) satisying mn ≥ 0, supp(mn) ⊆ [− 1

n ,
1
n ]k, and ‖mn‖1 = 1,

and put

ψn,± :=
(
ϕ± +

1
n

)
∗mn,

gn,± := ψn,±(φh1 , . . . , φhk),
gn,±,j := ∂jψn,±(φh1 , . . . , φhk).

Clearly gn,± ∈ FC∞b (E; D(A)) satisfy 1
n ≤ gn,± ≤ ‖ϕ‖∞ + 1, and

∥∥(f± +
1
n

)
− gn,±

∥∥
p
→ 0
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by dominated convergence. From Lemma 4.22 it follows that

‖H f −H (gn,+ − gn,−)‖p ≤ ‖H (f − (gn,+ − gn,−))‖p

.
∥∥∥ k∑
j=1

(fj − (gn,+,j − gj,n,−,j))⊗ hj
∥∥∥
p
,

where fj = ∂jϕ(φh1 , . . . , φhk). Since the functions

gn,±,j =
(
∂jϕ(φh1 , . . . , φhk)1{±ϕ(φh1 ,...,φhk )>0}

)
∗mn,

belong to L∞ uniformly in n, we conclude by dominated convergence that
‖fj − (gn,+,j − gn,−,j)‖p → 0. Therefore H (gn,+ − gn,−)→ H f in Lp(µ) as
n → ∞. Hence if ‖H gn,±‖p . ‖gn,±‖p with constants not depending on n,
then

‖H f‖p = lim
n→∞

‖H (gn,+ − gn,−)‖p

≤ lim
n→∞

(‖H gn,+‖p + ‖H gn,−‖p)

. lim
n→∞

(‖gn,+‖p + ‖gn,−‖p)

= ‖f+‖p + ‖f−‖p
≤ 2‖f‖p.

Thus it suffices to prove the result for f ∈ FC∞b (E; D(A)) satisfying f ≥ ε
for some ε > 0. Set

u(t, x) := P (t)f(x), x ∈ E, t > 0,

and notice that by Mehler’s formula (1.13) we have u(t, x) ≥ ε for all x ∈ E
and t ≥ 0. By Lemma 4.7 we have u(t, ·) ∈ FC∞b (E; D(A)) ⊆ Dp(L) for all
t ≥ 0. Arguing as in [32, 39, 152], for 1 < p ≤ 2 we use Lemma 4.7 and a
truncation argument to obtain that u(t, ·)p ∈ Dp(L) and

(∂t + L)u(t, x)p = pu(t, x)p−1(∂t + L)u(t, x)

− p(p− 1)u(t, x)p−2[BDV u(t, x), DV u(t, x)]

= −p(p− 1)u(t, x)p−2[BDV u(t, x), DV u(t, x)].

Hence, using the coercivity Assumption (A3),

‖DV u(t, x)‖2 ≤ k−1[BDV u(t, x), DV u(t, x)]

= − 1
kp(p− 1)

u(t, x)2−p(∂t + L)u(t, x)p.

Now we set
K(x) := −

∫ ∞
0

(∂t + L)u(t, x)p dt

and
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u?(x) := sup
t>0

u(t, x)

to obtain

H f(x)2 =
∫ ∞

0

‖DV u(t, x)‖2 dt

≤ −Cp,k
∫ ∞

0

u(t, x)2−p(∂t + L)u(t, x)p dt

≤ Cp,ku?(x)2−pK(x).

Hölder’s inequality with exponents 2
2−p and 2

p implies∫
E

H f(x)p dµ(x) ≤ C
p
2
p,k

∫
E

u?(x)
(2−p)p

2 K(x)
p
2 dµ(x)

≤ C
p
2
p,k

(∫
E

u?(x)p dµ(x)
) 2−p

2
(∫

E

K(x) dµ(x)
) p

2
.

(4.4)

Using the invariance of µ and the Lp-contractivity of P we obtain∫
E

K(x) dµ(x) = −
∫ ∞

0

∫
E

(∂t + L)u(t, x)p dµ(x) dt

= −
∫ ∞

0

∫
E

∂tu(t, x)p dµ(x) dt

= −
∫ ∞

0

∂t

∫
E

u(t, x)p dµ(x) dt

≤ lim
t→∞

(
‖f‖pp − ‖u(t, ·)‖pp

)
≤ ‖f‖pp,

(4.5)

where the use of Fubini’s theorem is justified by the non-negativity of the
integrand K, and the interchange of differentiation and integration by the
fact that f ∈ FC∞b (E; D(A)).

Combining (4.4), (4.5) and Proposition 5.54 we conclude that

‖H f‖pp . ‖u?‖
(2−p)p

2
p ‖f‖

p2

2
p . ‖f‖pp.

�

Proof (Proof of Theorem 4.18, 1 < p ≤ 2). First we show that Dp(L) is
contained in Dp(DV ). Once we know this, Lemmas 4.7 and 4.13 imply that
Dp(L) is a even core for Dp(DV ).

Fix a function f ∈ FC∞b (E; D(A)). From Theorem 4.14 it follows that
s 7→ e−sDV P (s)f = e−sP (s)DV f is Bochner integrable in Lp(µ;H) and∫ ∞

0

e−sDV P (s)f ds = (I + L)−1DV f.
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Since s 7→ e−sP (s)f is Bochner integrable in Lp(µ), the closedness of DV

implies that (I + L)−1f =
∫∞
0
e−sP (s)f ds ∈ Dp(DV ) and

DV (I + L)−1f = DV

∫ ∞
0

e−sP (s)f ds =
∫ ∞

0

e−sDV P (s)f ds.

Moreover, by the Cauchy-Schwarz inequality,

‖DV (I + L)−1f‖p ≤
∥∥∥∫ ∞

0

e−s‖DV P (s)f‖ ds
∥∥∥
p

≤ 1√
2

∥∥∥(∫ ∞
0

‖DV P (s)f‖2 ds
)1/2∥∥∥

p

=
1√
2
‖H f‖p . ‖f‖p.

It follows that DV (I + L)−1 extends to a bounded operator from Lp(µ) to
Lp(µ;H). In view of the closedness ofDV and Lemma 4.7, the desired inclusion
follows from this. This concludes the proof that Dp(L) is a core for Dp(DV ).

The γ-boundedness assertions follow from Theorem 5.47 and Remark 5.48.
�

The case 2 < p <∞

In case that P is symmetric it is possible to use a variant of a duality argument
of Stein [156] to prove the boundedness of H . This approach has been taken
in [32], but the proof breaks down if L is non-symmetric and we have to
proceed in a different way.

First we derive an explicit formula for the semigroup P which allows us
to prove suitable gradient bounds. Having obtained those gradient bounds we
give a general argument involving a maximal inequality for P ∗ to prove the
γ-boundedness of the collection {

√
tDV P (t) : t > 0}. Since L has a bounded

H∞-calculus, we obtain the boundedness of H by an appeal to Theorem 5.47.

We begin with some preliminary observations. For 0 < t < ∞ we define
the operators Qt ∈ L(E∗, E) by

Qtx
∗ := ii∗x∗ − iS∗(t)S(t)i∗x∗,

where i : H ↪→ E is the inclusion operator. The operators Qt are positive and
symmetric, i.e., for all x∗, y∗ ∈ E∗ we have 〈Qtx∗, x∗〉 ≥ 0 and 〈Qtx∗, y∗〉 =
〈Qty∗, x∗〉. Let Ht be the reproducing kernel Hilbert space associated with Qt
and let it : Ht ↪→ E be the inclusion mapping. Then,

iti
∗
t = Qt.
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Since 〈Qtx∗, x∗〉 ≤ 〈Qx∗, x∗〉 for all x∗ ∈ E∗, the operators Qt are covariances
of Gaussian measures µt on E by Proposition 1.5. This estimate also implies
that we have a continuous inclusion Ht ↪→ H and that the mapping

Vt : i∗x∗ 7→ i∗tx
∗, x∗ ∈ E∗,

is well defined and extends to a contraction from H into Ht. It is easy to check
that the adjoint operator V ∗t is the inclusion from Ht into H.

Let us also note that for s ≤ t and x∗ ∈ E∗ we have

〈Qsx∗, x∗〉 = ‖i∗x‖2 − ‖S(s)i∗x∗‖2 ≤ ‖i∗x‖2 − ‖S(t)i∗x∗‖2 = 〈Qtx∗, x∗〉

by the contractivity of S.
In the next proposition we fix t > 0 and h ∈ Ht and denote by φµth : E → R

the (µt-essentially unique; see Remark 1.13) µt-measurable linear extension
of the function φµth (itg) := [g, h]Ht .

Proposition 4.23. For all f = ϕ(φh1 , . . . , φhn) ∈ FCb(E) the following
identity holds for µ-almost all x ∈ E:

P (t)f(x) =
∫
E

ϕ(φS(t)h1(x) + φµtVth1
(y), . . . , φS(t)hn(x) + φµtVthn(y)) dµt(y).

Proof. Defining ψ : E × Rn → R by

ψ(x, ξ) := ϕ(φS(t)h1(x) + ξ1, . . . , φS(t)hn(x) + ξn),

we have ∫
E

ϕ(φS(t)h1(x) + φµtVth1
(y), . . . , φS(t)hn(x) + φµtVthn(y)) dµt(y)

=
∫
E

ψ
(
x, (φµtVth1

(y), . . . , φµtVthn(y))
)
dµt(y)

=
∫

Rn
ψ(x, ξ) dγt(ξ),

where γt is the centred Gaussian measure on Rn whose covariance matrix
equals

(
[Vthi, Vthj ]

)n
i,j=1

.

On the other hand, writing R(t) =
√
I − S∗(t)S(t), by Mehler’s formula

(1.13) we have

P (t)f(x) =
∫
E

ϕ(φS(t)h1(x) + φR(t)h1(y), . . . , φS(t)hn(x) + φR(t)hn(y)) dµ(y)

=
∫
E

ψ
(
x, (φR(t)h1(y), . . . , φR(t)hn(y))

)
dµ(y)

=
∫

Rn
ψ(ξ) dγ̃t(ξ),
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where γ̃t is the centred Gaussian measure on Rn whose covariance matrix
equals

(
[R(t)hi, R(t)hj ]

)n
i,j=1

.

The result follows from the observation that

[Vthi, Vthj ] = [hi, hj ]− [S(t)hi, S(t)hj ] = [R(t)hi, R(t)hj ].

�

Lemma 4.24. For all u ∈ H and t > 0 we have S∗(t)u ∈ D(V ∗), V ∗S∗(t)u ∈
Ht, and

‖V ∗S∗(t)u‖Ht .
1√
t
‖u‖.

Proof. First we observe that S(s) maps H into D(A) ⊆ D(V ) for s > 0. For
t > 0 we claim that

Jt : Vth 7→ V S(·)h

extends to a bounded operator from Ht into L2(0, t;H) of norm ≤ 1√
2k

.
Indeed, by the coercivity of B and the definition of Ht, we obtain for

h ∈ H, ∫ t

0

‖V S(s)h‖2 ds ≤ 1
k

∫ t

0

[BV S(s)h, V S(s)h] ds

= − 1
2k

∫ t

0

d

ds
‖S(s)h‖2 ds

= 1
2k

(
‖h‖2 − ‖S(t)h‖2

)
= 1

2k‖Vth‖
2
Ht .

Recall that V ∗t is the inclusion mapping Ht ↪→ H. Noting that S∗(t) maps
H into D(A∗) ⊆ D(V ∗) and using Lemma 4.11, the adjoint mapping J∗t :
L2(0, t;H)→ Ht is given by

V ∗t J
∗
t f =

∫ t

0

V ∗S∗(s)f(s) ds, f ∈ L2(0, t;H).

The resulting identity V ∗S∗(t)u = 1
tV
∗
t J
∗
t

(
S∗(t − ·)u

)
shows that V ∗S∗(t)u

can be identified with the element 1
t J
∗
t

(
S∗(t− ·)u

)
of Ht and we obtain

‖V ∗S∗(t)u‖Ht =
1
t
‖J∗t

(
S∗(t− ·)u

)
‖Ht

≤ 1
t
√

2k
‖S∗(t− ·)u‖L2(0,t;H)

≤ 1√
2kt

sup
s≥0
‖S∗(s)‖L(H)‖u‖.

�
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The following pointwise gradient bound is included for reasons of com-
pleteness. We shall only need the special case corresponding to r = 2, for
which a simpler proof can be given; see Remark 4.26.

Theorem 4.25 (Pointwise gradient bounds). Let 1 < r < ∞. For f ∈
FCb(E) and t > 0 we have, for µ-almost all x ∈ E,

√
t‖DV P (t)f(x)‖ . (P (t)|f |r(x))1/r.

Proof. For notational simplicity we take f of the form f = ϕ(φh) with ϕ ∈
Cb(R) and h ∈ H. It is immediate to check that the argument carries over to
general cylindrical functions in FCb(E).

By Lemma 4.24 we have S∗(t)V ∗u ∈ Ht for u ∈ D(V ∗) and therefore, for
all h ∈ H,

φS(t)h(iV ∗u) = [S(t)h, V ∗u] = [h, S∗(t)V ∗u] = φµtVth(iS∗(t)V ∗u).

By Proposition 4.23 (with H = R) we find that for all g ∈ H,

P (t)f(x+ iV ∗u) =
∫
E

ϕ(φS(t)h(x+ iV ∗u) + φµtVth(y)) dµt(y)

=
∫
E

ϕ(φS(t)h(x) + φµtVth(y + iS∗(t)V ∗u)) dµt(y).

Recalling that D denotes the Malliavin derivative we have, for all u ∈ D(V ∗),

[DV P (t)f(x), u] = [DP (t)f(x), V ∗u]

= lim
ε↓0

1
ε

(
P (t)f(x+ εiV ∗u)− P (t)f(x)

)
= lim

ε↓0

1
ε

∫
E

ϕ(φS(t)h(x) + φµtVth(y + εiS∗(t)V ∗u))

− ϕ(φS(t)h(x) + φµtVth(y)) dµt(y).

Using Lemma 4.24 and the Cameron-Martin Theorem 1.17 we obtain

[DV P (t)f(x), u] = lim
ε↓0

1
ε

∫
E

(
EµtεS∗(t)V ∗u(y)− 1

)
ϕ(φS(t)h(x) + φµtVth(y)) dµt(y),

where Eµth (y) = exp
(
φµth (y)− 1

2‖h‖
2
Ht

)
. It is easy to see that for each h ∈ Ht

the family
(

1
ε (Eµtεh − 1)

)
0<ε<1

is uniformly bounded in L2(µt), and therefore
uniformly integrable in L1(µt). Passage to the limit ε ↓ 0 now gives

[DV P (t)f(x), u] =
∫
E

φµtS∗(t)V ∗u(y)ϕ(φS(t)h(x) + φµtVth(y)) dµt(y).

By Hölder’s inequality with 1
q + 1

r = 1, using the Gaussianity of φµtS∗(t)V ∗u
on (µt) and the Kahane-Khintchine inequality, Proposition 4.23, and Lemma
4.24 we find that
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|[DV P (t)f(x), u]|

≤
(∫

E

|φµtS∗(t)V ∗u(y)|q dµt(y)
)1/q(∫

E

|ϕ(φS(t)h(x) + φµtVth(y))|r dµt(y)
)1/r

.
(∫

E

|φµtS∗(t)V ∗u(y)|2 dµt(y)
)1/2

(P (t)|f |r(x))
1
r

= ‖S∗(t)V ∗u‖Ht(P (t)|f |r(x))
1
r

.
1√
t
‖u‖(P (t)|f |r(x))

1
r .

The desired estimate is obtained by taking the supremum over all u ∈ D(V ∗)
with ‖u‖ ≤ 1. �

Remark 4.26. There is a different argument which we learned from [101,
p.328]) which can be used to prove Theorem 4.25 for r = 2. Using the prod-
uct rule from Lemma 4.7, the fact that ‖Bu‖ ≥ k‖u‖ for u ∈ R(V ), and the
positivity of P (s), we obtain

P (t)f2 − (P (t)f)2 =
∫ t

0

∂s
(
P (s)

(
|P (t− s)f |2

))
ds

= −
∫ t

0

P (s)
(
L(P (t− s)f)2 − 2P (t− s)f · LP (t− s)f

)
ds

= 2
∫ t

0

P (s)
(
‖BDV P (t− s)f‖2

)
ds

≥ 2k
∫ t

0

P (s)
(
‖DV P (t− s)f‖2

)
ds.

Next we estimate, for µ-almost all x ∈ E,

M2P (r)(‖DV f‖2)(x) ≥ P (r)(‖S(r)DV f‖2)(x)
(∗)
≥ ‖(P (r)⊗ I)(S(r)DV f)‖2(x)

= ‖P (r)DV f(x)‖2

= ‖DV P (r)f(x)‖2,

where M := supt≥0 ‖S(t)‖ and (∗) follows from Proposition 4.23 (with H =
H) and Jensen’s inequality. The case r = 2 of Theorem 4.25 follows from these
two estimates.

The next result is in some sense the dual version of a maximal inequality.
It could be compared with the dual version of the non-commutative Doob
inequality of [86].

Proposition 4.27. Let (T (t))t>0 be a family of positive operators operators
on Lp := Lp(M,µ), where (M,µ) is a σ-finite measure space and 1 ≤ p <∞.
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Suppose that the maximal function T ∗? f := supt>0 |T ∗(t)f | is measurable and
Lq-bounded, where 1

p+ 1
q = 1. Then, for all f1, . . . , fn ∈ Lp and all t1, . . . , tn >

0, ∥∥∥ n∑
k=1

T (tk)|fk|
∥∥∥
p
.
∥∥∥ n∑
k=1

|fk|
∥∥∥
p
.

Proof. Taking the supremum over all g = (gk)nk=1 ∈ Lq(`∞n ) of norm one we
obtain ∥∥∥ n∑

k=1

T (tk)|fk|
∥∥∥
p

= ‖
(
T (t(·))|f(·)|

)
‖Lp(`1n)

= sup
g

∫
E

n∑
k=1

T (tk)|fk| · gk dµ

= sup
g

∫
E

n∑
k=1

|fk| · T ∗(tk)gk dµ

≤ ‖
(
|f(·)|

)
‖Lp(`1n) sup

g
‖
(
T ∗(t(·))g(·)

)
‖Lq(`∞n ).

Using the positivity of T ∗ on Lq to obtain

sup
1≤k≤n

T ∗? |gk| ≤ T ∗?
(

sup
1≤k≤n

|gk|
)
,

we estimate ∥∥(T ∗(t(·))g(·))∥∥Lq(`∞n )
=
∥∥ sup

1≤k≤n
|T ∗(tk)gk|

∥∥
Lq

≤
∥∥ sup

1≤k≤n
T ∗? |gk|

∥∥
Lq

≤
∥∥T ∗? ( sup

1≤k≤n
|gk|)

∥∥
Lq

.
∥∥ sup

1≤k≤n
|gk|

∥∥
Lq

= ‖(gk)‖Lq(`∞n ).

This completes the proof. �

The previous two results are now combined to prove:

Proof (of Theorem 4.18, 2 < p <∞). Let 2
p + 1

q = 1. Proposition 5.54 implies
that the maximal function

P ∗? f := sup
t>0
|P ∗(t)f |

is bounded on Lq. Using Theorem 4.25 (for r = 2) and Proposition 4.27 we
obtain, for all f1, . . . , fn ∈ FCb(E),
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k=1

‖
√
tkDV P (tk)fk‖2

)1/2∥∥∥
p
.
∥∥∥( n∑

k=1

P (tk)|fk|2
)1/2∥∥∥

p

=
∥∥∥ n∑
k=1

P (tk)|fk|2
∥∥∥1/2

p/2

.
∥∥∥ n∑
k=1

|fk|2
∥∥∥1/2

p/2

=
∥∥∥( n∑

k=1

|fk|2
)1/2∥∥∥

p
.

By an approximation argument this estimate extends to arbitrary f1, . . . , fn ∈
Lp(µ). Now Proposition 5.5 implies the γ-boundedness of {

√
tDV P (t) : t >

0}.
Taking Laplace transforms and using Proposition 5.3, it follows that

Dp(L) ⊆ Dp(DV ) and that the collection {tDV (I + t2L)−1 : t > 0} is γ-
bounded from Lp(µ) into Lp(µ;H). As in the case 1 < p ≤ 2, Lemmas 4.7
and 4.13 imply that Dp(L) is even a core for Dp(DV ). �

Proof (Proof of Theorem 4.19, 2 < p < ∞). Since L has a bounded H∞-
calculus of angle < 1

2π by Proposition 4.17, the result follows from Theorem
5.47. �

γ-Bisectoriality of the operator Π

Our next aim is to show that the estimates obtained in Section 4.2 imply
randomised bisectoriality of the operator Π.

We need a couple of technical results which are necessary for a rigorous
Lp-analysis. Readers who are primarily interested in the main ideas are rec-
ommended to jump to Theorem 4.32

For the next result we recall that C := FC∞b (E; D(A)) is a P -invariant
core for Dp(L). We set C∗ := FC∞b (E; D(A∗)); this is a P ∗-invariant core for
Dp(L∗).

Proposition 4.28. In Lp we have L = (D∗VB)DV . More precisely, f ∈ Dp(L)
if and only if f ∈ Dp(DV ) and DV f ∈ Dp(D∗VB), in which case we have
Lf = (D∗VB)DV f.

Proof. First note that for all f, g ∈ C we have 〈Lf, g〉 = 〈DV f,B
∗DV g〉. Since

C is a core for Dp(L), and Dp(L) is core for Dp(DV ) by the first part of Theorem
4.18, this identity extends to all f ∈ Dp(L) and g ∈ Dp(DV ). This implies that
DV f ∈ Dp((B∗DV )∗) and (B∗DV )∗DV f = Lf. Since (B∗DV )∗ = D∗VB, we
find that L ⊆ (D∗VB)DV .

To prove the other inclusion we take f ∈ Dp(DV ) such that DV f ∈
Dp(D∗VB). We have 〈f, L∗g〉 = 〈DV f,B

∗DV g〉 = 〈(D∗VB)DV f, g〉 for all g ∈
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C∗, where the second identity follows from DV f ∈ Dp(D∗VB) = Dp((B∗DV )∗).
Since C∗ is a core for Dp(L∗) this implies that f ∈ D(L) and Lf = (D∗VB)DV f.

�

We shall be interested in the restriction D∗VB|Rp(DV )
of D∗VB to Rp(DV ).

As its domain we take

Dp(D∗VB|Rp(DV )
) := {f ∈ Rp(DV ) : Bf ∈ Dp(D∗V )} = Dp(D∗VB) ∩ Rp(DV ).

In the middle expression, as before we consider D∗V as a densely defined op-
erator from Lp(µ;H) to Lp(µ).

Corollary 4.29. The restriction D∗VB|Rp(DV )
is closed and densely defined.

Proof. Let f ∈ Dp(DV ). By the first part of Theorem 4.18 there exist functions
fn ∈ Dp(L) such that fn → f in Dp(DV ). Proposition 4.28 implies that
DV fn ∈ Dp(D∗VB|Rp(DV )

). This shows that D∗VB|Rp(DV )
is densely defined on

Rp(DV ). Closedness is clear. �

Proposition 4.30. The domain Dp(L) is a core for Dp(D∗VB|Rp(DV )
). More-

over, for all t > 0 the operators (I+t2L)−1D∗VB|Rp(DV )
and P (t)D∗VB|Rp(DV )

(initially defined on Dp(D∗VB|Rp(DV )
)) extend uniquely to bounded operators

from Rp(DV ) to Lp(µ), and for all F ∈ Rp(DV ) we have

(I + t2L)−1D∗VBF = D∗VB(I + t2L)−1F

and
P (t)D∗VBF = D∗VBP (t)F.

Proof. We split the proof into four steps.
Step 1 - By Proposition 4.28, for all f ∈ Dp(L) we have f ∈ Dp(DV ) and

DV f ∈ Dp(D∗VB|Rp(DV )
), and for all t > 0 we have

P (t)(D∗VB)DV f = P (t)Lf = LP (t)f = (D∗VB)DV P (t)f = D∗VBP (t)DV f.

By taking Laplace transforms and using the closedness of D∗VB, this gives
(I + t2L)−1DV f ∈ Dp(D∗VB|R(DV )

) and

(I + t2L)−1(D∗VB)DV f = D∗VB(I + t2L)−1DV f. (4.6)

Step 2 - By Theorem 4.18, for all t > 0 the operator T (t) := B∗DV (I +
t2L∗)−1 is bounded from Lp

′
(µ) into Lp

′
(µ;H), 1

p + 1
p′ = 1. For all F ∈

Dp(D∗VB|Rp(DV )
) and g ∈ Lq(µ) we have

〈F, T (t)g〉 = 〈F,B∗DV (I + t2L∗)−1g〉 = 〈(I + t2L)−1D∗VBF, g〉. (4.7)
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Now let F ∈ Rp(DV ) be arbitrary and let (Fn)n≥1 ⊆ Dp(D∗VB|Rp(DV )
) be a

sequence converging to F in Rp(DV ). By Proposition 4.28 and the fact that
Dp(L) is a core for Dp(DV ) we may take the Fn of the form DV fn with
fn ∈ Dp(L). Then (I + t2L)−1Fn → (I + t2L)−1F , and from (4.6) we obtain

D∗VB(I + t2L)−1Fn = (I + t2L)−1D∗VBFn = T ∗(t)Fn → T ∗(t)F.

The closedness of D∗VB implies that (I + t2L)−1F ∈ Dp(D∗VB|Rp(DV )
). This

proves the domain inclusion Dp(L) ⊆ Dp(D∗VB|Rp(DV )
), along with the iden-

tity
D∗VB(I + t2L)−1F = T ∗(t)F, F ∈ Rp(DV ).

Note that for F ∈ Dp(D∗VB), from (4.7) we also obtain

D∗VB(I + t2L)−1F = T ∗(t)F = (I + t2L)−1D∗VBF. (4.8)

Step 3 - By Step 2 the operator D∗VB(I+ t2L)−1 is bounded from Rp(DV )
to Lp(µ). Therefore, by (4.6), the operator (I + t2L)−1D∗VB (initially de-
fined on the dense domain Dp(D∗VB|Rp(DV )

)) uniquely extends to a bounded

operator from Rp(DV ) to Lp(µ), and for this extension we obtain the identity

(I + t2L)−1D∗VB = D∗VB(I + t2L)−1.

On Dp(D∗VB|Rp(DV )
), the identity D∗VBP (t) = P (t)D∗VB follows from (4.8)

by real Laplace inversion (cf. the proof of Lemma 4.11). The existence of a
unique bounded extension of P (t)D∗VB is proved in the same way as before.

Step 4 – It remains to prove that Dp(L) is a core for Dp(D∗VB|Rp(DV )
).

Take F ∈ Dp(D∗VB|Rp(DV )
). Then limt→0(I + t2L)−1F = F in Rp(DV ) and,

by (4.8) limt→0D
∗
VB(I + t2L)−1F = limt→0(I + t2L)−1D∗VBF = D∗VBF in

Lp(µ). This gives the result. �

Proposition 4.31. For all F ∈ Dp(L) we have F ∈ Dp(D∗VB), D∗VBF ∈
Dp(DV ), and DV (D∗VB)F = LF.

Proof. Since Dp(L) is a core for Dp(DV ), the set P := {DV (I + L)−1g :
g ∈ Dp(DV )} is a P -invariant dense subspace of Rp(DV ). To see that P is
contained in Dp(L), note that if g ∈ Dp(DV ), then f := (I + L)−1g ∈ Dp(L)
and DV f = DV (1+L)−1g = (1+L)−1DV g ∈ Dp(L) as claimed. It follows that
P is a core for Dp(L), and hence a core for Dp(D∗VB|Rp(DV )

) by Proposition
4.30. Moreover, (1 + L)DV f = DV g = DV (I + L)f , and therefore LDV f =
DV Lf .

For F ∈P, say F = DV f with f = (I + L)−1g for some g ∈ Dp(DV ), we
then have

LF = LDV f = DV Lf = DV ((D∗VB)DV )f
= (DV (D∗VB))DV f = DV (D∗VB)F.
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To see that this above identity extends to arbitrary F ∈ Dp(L), let Fn → F
in Dp(L) with all Fn in P. It follows from Proposition 4.30 that Fn → F in
Dp(D∗VB). In particular, D∗VBFn → D∗VBF in Lp(µ). Since DV (D∗VB)Fn =
LFn → LF in Rp(DV ), the closedness of DV then implies that D∗VBF ∈
Dp(DV ) and DV (D∗VB)F = LF . �

In the remainder of this section we consider D∗VB as a closed and densely
defined operator from Rp(DV ) to Lp(µ) and write D∗VB instead of using the
more precise notation D∗VB|Rp(DV )

.

Theorem 4.32. Let 1 < p <∞. The operator Π is γ-bisectorial on Lp(µ)⊕
Rp(DV ).

Proof. First we check that N(I− itΠ) = {0} for t ∈ R\{0}. For this purpose,
suppose that (I − itΠ)(f, F ) = 0 for some f ∈ Lp(µ) and F ∈ Rp(DV ). Then
f − itD∗VBF = 0 and F − itDV f = 0. Combining these identities we deduce
that f + t2(D∗VB)DV f = 0. Since (D∗VB)DV = L by Proposition 4.28, we
find that f = 0 by the sectoriality of L. It follows that F = 0 as well.

A computation based on the technical lemmata in this section and the
resolvent formula below shows that I − itΠ is surjective as an operator on
Lp(µ)⊕ Rp(DV ). It follows that iR \ {0} ⊆ ρ(Π) and

(I − itΠ)−1 =
[

(1 + t2L)−1 it(I + t2L)−1D∗VB
itDV (I + t2L)−1 (I + t2L)−1

]
, t ∈ R \ {0};

the rigorous interpretation of this identity (in particular, the surjectivity of
it − Π) is provided by the above propositions. Note that the off-diagonal
entries are well defined and bounded by Theorem 4.18 and Proposition 4.30;
the proof of the latter result also shows that (I + t2L)−1D∗VB is the adjoint
of BDV (I + t2L)−1.

It remains to check the γ-boundedness of the entries of the right-hand
side matrix for t ∈ R \ {0}. For the upper left and the lower right entry this
follows from the γ-sectoriality of L and L on Lp(µ) and Rp(DV ) respectively.
Theorem 4.18 ensures the γ-boundedness of the lower left entry, and the γ-
boundedness of the upper right entry follows from Proposition 5.4 (applied
with B and L replaced by B∗ and L∗). �

As a consequence of the bisectoriality of Π, the operator Π2 is sectorial.
Moreover,

Π2 =
[
(D∗VB)DV 0

0 DV (D∗VB)

]
=
[
L 0
0 L

]
.

To justify the latter identity, we appeal to Propositions 4.28 and 4.31 to obtain

the inclusion
[
L 0
0 L

]
⊆ Π2. Since both operators are sectorial of angle < 1

2π,

they are in fact equal.
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Proposition 4.33. On Lp(µ) and Rp(DV ) the following identities hold:

Rp(L) = Rp(D∗VB), Np(L) = Np(DV ),

Rp(L) = Rp(DV ), Np(L) = Np(D∗VB) = {0}.

Moreover, Lp(µ) = Rp(D∗VB)⊕ Np(DV ).

We recall thatD∗VB is interpreted as a densely defined closed operator from
Rp(DV ) to Lp(µ). In the final section we will show that under the assumptions
of Theorem 4.37(c) we have Rp(D∗VB) = Rp(D∗V ) and that in this situation
the space Rp(D∗VB) does not change if we consider D∗VB as an unbounded
operator from Lp(µ;H) to Lp(µ).

Proof. The bisectoriality of Π on Lp(µ)⊕ Rp(DV ) implies that

Rp(Π2) = Rp(Π) and Np(Π2) = Np(Π).

The result follows from this by considering both coordinates separately. The
fact that Np(D∗VB) = {0} follows from the bisectorial decomposition Lp(µ)⊕
Rp(DV ) = Rp(Π) ⊕ Np(Π) and considering the second coordinate. The final
identity follows by inspecting the first coordinate of the same decomposition.

�

4.3 Lp-Boundedness of the Riesz transform

In this section we will complete the proof of Theorem 4.37, which is a refined
version of Theorem 0.1. First we will prove square function estimates for the
operator L in a slightly more general setting.

Square function estimates for generators of tensor product
semigroups

In this section we will leave the Wiener space framework and prove a general
result on square function estimates for tensor product semigroups on Hilbert
space-valued Lp-spaces.

Let H be a Hilbert space and let (M,µ) a σ-finite measure space, and
fix 1 < p < ∞. We consider γ-sectorial operators L and A on Lp(µ) and
H respectively of angle ω+

γ (L), ω+(A) < 1
2π. It follows that −L and −A

generate γ-bounded analytic C0-semigroups P and S on Lp(µ) and H. We
denote by −L the generator of the tensor product C0-semigroup P = P ⊗ S
on Lp(µ;H). It follows that P is a bounded analytic C0-semigroup on Σ+

θ ,
where θ := 1

2π −max{ω+
R(L), ω+(A)}. Lemma 5.46 implies that the operator

L is γ-sectorial of angle θ on Lp(µ;H).
We consider the following three square function norms:
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‖u‖A :=
(∫ ∞

0

‖tAS(t)u‖2 dt
t

)1/2

, u ∈ H;

‖f‖p,L :=
∥∥∥(∫ ∞

0

|tLP (t)f |2 dt
t

)1/2∥∥∥
p
, f ∈ Lp(µ);

‖F‖p,L :=
∥∥∥(∫ ∞

0

‖tLP (t)F‖2 dt
t

)1/2∥∥∥
p
, F ∈ Lp(µ;H).

The main result in this subsection is the following:

Proposition 4.34. Under the above assumptions we have:

(1) If ‖u‖A . ‖u‖ for all u ∈ H and ‖f‖p,L . ‖f‖p for all f ∈ Lp(µ), then
‖F‖p,L . ‖F‖p for all F ∈ Lp(µ;H).

(2) If ‖u‖A & ‖(I −PN(A))u‖ for all u ∈ H and ‖f‖p,L & ‖(I −PN(L))f‖p for
all f ∈ Lp(µ), then ‖F‖p,L & ‖(I − PN(L))F‖p for all F ∈ Lp(µ;H).

As a consequence, if A and L have bounded H∞-functional calculi of angles
less than 1

2π, then L has a bounded H∞-functional calculus of angle less than
1
2π.

Proof. Let us first show that (1) implies (2). It is well known that the as-
sumptions of (2) imply the dual estimates ‖u‖A∗ . ‖u‖ and ‖f‖q,L∗ . ‖f‖q,
where 1

p + 1
q = 1. By (1) we obtain that ‖F‖q,L∗ . ‖F‖q, and by duality we

obtain the conclusion of (2).
The final assertion follows by combining (1) and (2) with Theorem 5.40.
It remains to prove (1). We proceed in three steps.
Step 1: We prove that

‖t(I ⊗A)(I ⊗ S(t))F‖γ(L2(R+,
dt
t ),Lp(µ;H)) . ‖F‖p.

For F ∈ Lp(µ;H) we have, for µ-almost all x ∈M ,(∫ ∞
0

‖t(I ⊗A)(I ⊗ S(t))F (x)‖2 dt
t

)1/2

. ‖F (x)‖.

Integrating this estimate over M yields∥∥∥(∫ ∞
0

‖t(I ⊗A)(I ⊗ S(t))F‖2 dt
t

)1/2∥∥∥
p
≤ ‖F‖p.

Step 2: We prove that

‖t(L⊗ I)(P (t)⊗ I)F‖γ(L2(R+,
dt
t ),Lp(µ;H)) . ‖F‖p.

Let (hj)kj=1 be a finite orthonormal system in H and pick F :=
∑k
j=1 fj ⊗

hj ∈ Lp(µ;H). For f ∈ Lp(µ) let

(Uf)(t) := tLP (t)f
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and notice that U is a bounded operator from Lp(µ) into γ(L2(R+,
dt
t ), Lp(µ))

by the assumption in (1) and Proposition 5.15.
Let (r′j)j≥1 and (γ′j)j≥1 be a Rademacher and a Gaussian sequence respec-

tively on a probability space (Ω′,P′). Noting the pointwise equality

‖t(L⊗ I)(P (t)⊗ I)F‖2 =
k∑
j=1

|Ufj(t)|2

we have∥∥∥(∫ ∞
0

‖t(L⊗ I)(P (t)⊗ I)F‖2 dt
t

)1/2∥∥∥
p

=
∥∥∥(∫ ∞

0

k∑
j=1

|Ufj(t)|2
dt

t

)1/2∥∥∥
p

=
∥∥∥(∫ ∞

0

E′
∣∣∣ k∑
j=1

r′jUfj(t)
∣∣∣2 dt
t

)1/2∥∥∥
p

h
∥∥∥ k∑
j=1

r′jUfj

∥∥∥
γ(L2(R+×Ω′, dtt ⊗P′),Lp(µ))

(∗)
h
∥∥∥U k∑

j=1

r′jfj

∥∥∥
γ(L2(Ω′,P′),γ(L2(R+,

dt
t ),Lp(µ)))

(∗∗)
.
∥∥∥ k∑
j=1

r′jfj

∥∥∥
γ(L2(Ω′,P′),Lp(µ))

(∗∗∗)
=

(
E′
∥∥∥ k∑
j=1

γ′jfj

∥∥∥2

Lp(µ)

)1/2

h
(
E′
∥∥∥ k∑
j=1

γ′jfj

∥∥∥p
Lp(µ)

)1/p

=
∥∥∥(E′

∣∣∣ k∑
j=1

γ′jfj

∣∣∣p)1/p∥∥∥
Lp(µ)

h
∥∥∥( k∑

j=1

|fj |2
)1/2∥∥∥

Lp(µ)

= ‖F‖p.

In (∗) we used Proposition 5.12, in (∗∗) we used the boundedness of U from
Lp(µ) into γ(L2(R+,

dt
t ), Lp(µ)), and in (∗∗∗) the definition of the radonifying

norm of finite rank operators.

Step 3: We combine the previous two estimates. By Lemma 5.46 the family
{P (t) : t ≥ 0} is γ-bounded on Lp(µ). Hence by Proposition 5.6 the family
{P (t) ⊗ I : t ≥ 0} is γ-bounded on Lp(µ;H). Also, by a simple application
of Fubini’s theorem, {I ⊗ S(t) : t ≥ 0} is γ-bounded. Combining these facts
with Proposition 5.16, for F ∈ Lp(µ;H) we obtain∥∥∥(∫ ∞

0

‖tLPF‖2 dt
t

)1/2∥∥∥
p

h ‖tLPF‖γ(L2(R+,
dt
t ),Lp(µ;H))

. ‖(I ⊗ S(t))t(L⊗ I)(P (t)⊗ I)F‖γ(L2(R+,
dt
t ),Lp(µ;H))

+ ‖(P (t)⊗ I)t(I ⊗A)(I ⊗ S(t))F‖γ(L2(R+,
dt
t ),Lp(µ;H))

. ‖t(L⊗ I)(P (t)⊗ I)F‖γ(L2(R+,
dt
t ),Lp(µ;H))

+ ‖t(I ⊗A)(I ⊗ S(t))F‖γ(L2(R+,
dt
t ),Lp(µ;H))

. ‖F‖p. �
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Remark 4.35. The final assertion in Proposition 4.34 is due to Lancien, Lan-
cien, and Le Merdy [98, Theorem 1.4] who proved it using operator-valued
H∞-functional calculi.

Proof of the main result

We return to the Wiener space setting and present the proof of Theorem 0.1.
We start with an Lp-analogue of Proposition 3.12. Observe that the proof
uses the γ-bisectoriality of the operator Π which has been proved in Theorem
4.32.

Proposition 4.36. Let 1 < p <∞. For ψ ∈ H∞0 (Σ+
θ ) where θ ∈ (2ωγ(Π), π)

we have

‖
√
Lf‖p h ‖ψ(tL)DV f‖γ(L2(R+,

dt
t ),Lp(µ,H)), f ∈ D(L).

Proof. Take ϕ̃ ∈ H∞0 (Σ+
2θ) and define ϕ ∈ H∞0 (Σθ) by ϕ(z) := ϕ̃(z2). We

obtain

‖
√
Lu‖ h ‖ψ(tL)

√
Lu‖γ(L2(R+,

dt
t ),Lp(µ)) (Proposition 3.11)

=
∥∥ψ(tΠ2)

√
Π2

[
u
0

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

h
∥∥ψ̃(tΠ)

√
Π2

[
u
0

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

(Proposition 5.32)

=
∥∥ sgn(tΠ)ψ̃(tΠ)Π

[
u
0

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

(Proposition 5.30)

h
∥∥ψ̃(tΠ)Π

[
u
0

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

(Corollary 5.39)

=
∥∥ψ̃(tΠ)

[
0

DV u

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

h
∥∥ψ(tΠ2)

[
0

DV u

] ∥∥
γ(L2(R+,

dt
t ),Lp(µ))

(Proposition 5.32)

h ‖ψ(tL)DV u‖γ(L2(R+,
dt
t ),Lp(µ;H)).

The extension to arbitrary ψ ∈ H∞0 (Σ+
θ ) follows from Corollary 5.39. �

Now we are ready to prove our main result, which is a comprehensive
version of Theorem 0.1 involving one-sided estimates for the Riesz transform
associated with L.

Theorem 4.37. Let 1 < p <∞.

(a) The following assertions are equivalent:
(a1) Dp(

√
L) ⊆ Dp(DV ) with ‖DV f‖p . ‖

√
Lf‖p;
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(a2) L satisfies a square function estimate on Rp(DV ):

‖F‖p .
∥∥∥(∫ ∞

0

‖tLP (t)F‖2 dt
t

)1/2∥∥∥
p
;

(a3) D(
√
A) ⊆ D(V ) with ‖V h‖ . ‖

√
Ah‖;

(a4) A satisfies a square function estimate on R(V ):

‖u‖ .
(∫ ∞

0

‖tAS(t)u‖2 dt
t

)1/2

.

(b) The same result holds with ‘.’ and ‘⊆’ replaced by ‘&’ and ‘⊇’.
(c) The following assertions are equivalent:

(c1) Dp(
√
L) = Dp(DV ) with ‖DV f‖p h ‖

√
Lf‖p;

(c2) L admits a bounded H∞-functional calculus on Rp(DV );
(c3) D(

√
A) = D(V ) with ‖V h‖ h ‖

√
Ah‖;

(c4) A admits a bounded H∞-functional calculus on R(V ).

Proof. The equivalence of (a1) and (a2) follows from Proposition 4.36, and the
equivalence of (a3) and (a4) has been proved in Theorem 3.13. The implication
(a1) ⇒ (a3) is trivial, given the equivalence of Lp-norms on the first Wiener-
Itô chaos (Theorem 1.18) and Theorem 4.3. (The the implication (a2)⇒ (a4)
is trivial as well.) The implication (a4)⇒ (a2) is a consequence of Proposition
4.34.

Part (b) follows by the same arguments, and (c) follows by putting together
the estimates obtained in (a) and (b) and appealing to Proposition 5.40. �

For the sake of completeness we give an alternative proof of the fact that
(a2) implies (a1). It follows the more traditional approach based on square
functions and avoids the use of the Hodge-Dirac operator.

Proof (Alternative proof of Theorem 4.37, (a2) ⇒ (a1)). Fix 1 < p <∞ and
let 1

p + 1
q = 1. The proof of is based on a lower bound for the square function

associated with the semigroup Q generated by −
√
L.

Consider the functions ϕ(z) = ze−z and ψ(z) =
√
ze−

√
z. These functions

belong to H∞0 (Σ+
θ ) for θ < 1

2π, and with the substitution t = s2 we obtain∥∥∥(∫ ∞
0

‖ψ(tL)F‖2 dt
t

)1/2∥∥∥
p

=
√

2
∥∥∥(∫ ∞

0

‖s
√
LQ(s)F‖2 ds

s

)1/2∥∥∥
p
.

Using (a2) and the first part of Theorem 5.40, the identity of Theorem 4.14
(which extends to Q), and Lemma 4.20 and Theorem 4.19, for all f ∈ Dp(L)
we obtain
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‖DV f‖p .
∥∥∥(∫ ∞

0

‖tLP (t)DV f‖2
dt

t

)1/2∥∥∥
p

h
∥∥∥(∫ ∞

0

‖s
√
LQ(s)DV f‖2

ds

s

)1/2∥∥∥
p

=
∥∥∥(∫ ∞

0

‖sDVQ(s)
√
Lf‖2 ds

s

)1/2∥∥∥
p

= ‖G (
√
Lf)‖p ≤ ‖H (

√
Lf)‖p . ‖

√
Lf‖p.

Since Dp(L) is a core for both Dp(
√
L) and Dp(DV ), the desired domain

inclusion follows and the norm estimate holds for all f ∈ Dp(
√
L). �

We finish this section by pointing out two further equivalences to the ones
of Theorem 4.37.

Proposition 4.38. The conditions (c1)–(c4) of Theorem 4.37 are equivalent
to

(c5) Dp(
√
L) = Dp(D∗VB) with ‖

√
LF‖p h ‖D∗VBF‖p for F ∈ Dp(

√
L);

(c6) D(
√
A) = D(V ∗B) with ‖

√
Au‖p h ‖V ∗Bu‖p for u ∈ D(

√
A).

Proof. To see that (c1) implies (c5), note that for f ∈ Dp(L) we have

‖(D∗VB)DV f‖p = ‖Lf‖p h ‖DV

√
Lf‖p = ‖

√
LDV f‖p.

Since DV (Dp(L)) is a core for both Dp(D∗VB) and Dp(
√
L), (c5) follows. The

converse implication that (c5) implies (c1) is proved similarly. The equivalence
(c3)⇔(c6) has already been proved in Proposition 3.14. �

It is clear from the proofs that the one-sided versions of these implications
hold as well.

4.4 The Hodge decomposition

In this section we will apply Theorem 4.37 to prove the following decomposi-
tion theorem.

Theorem 4.39 (Hodge decompositions). Let 1 < p < ∞. One has the
direct sum decomposition

Lp(µ) = Rp(D∗VB)⊕ Np(DV ),

where D∗VB is interpreted a closed densely defined operator from Rp(DV ) to
Lp(µ). If the equivalent conditions of Theorem 0.1 hold, then the above de-
composition remains true when D∗VB is interpreted as a closed densely defined
operator from Lp(µ;H) to Lp(µ). In that case one has the direct sum decom-
position
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Lp(µ;H) = Rp(DV )⊕ Np(D∗VB),

where D∗VB is interpreted as a closed densely defined operator from Lp(µ;H)
to Lp(µ).

The first part of this result has already been proved in Proposition 4.33.
We begin with some preparations for the proof of the second part.

In the remainder of this section we interpret D∗VB as a closed densely
defined operator from Lp(µ;H) to Lp(µ).

Proof (Proof of Theorem 4.39, second part). We shall prove separately that

Rp(DV ) + Np(D∗VB) = Lp(µ;H), (4.9)

Rp(DV ) ∩ Np(D∗VB) = {0}. (4.10)

The proof of (4.9) is more or less standard. The idea behind the proof of (4.10)
is to note that for p = 2 the Hodge decomposition is obtained as a special case
of the Hodge decomposition theorem of Axelsson, Keith, and McIntosh [12],
and to use this fact together with the fact that the Lp-norm and L2-norm are
equivalent on each summand in the Wiener-Itô decomposition.

We begin with the proof of (4.9). By Theorem 0.1(1) the operator R :=
DV /

√
L is well defined on Rp(

√
L) and bounded. In view of the decomposition

Lp(µ) = Rp(
√
L)⊕Np(

√
L) we may extend R to Lp(µ) by putting R|Np(

√
L) :=

0. A similar remark applies to the operator R∗ := DV /
√
L∗.

For F ∈ Lp(µ;H) we claim that RR∗∗F ∈ Rp(DV ), where R∗∗ := (R∗)∗.
Indeed, there exists f ∈ Np(

√
L) and a sequence fn ∈ Dp(

√
L) such that

f +
√
Lfn → R∗∗F in Lp(µ). Therefore RR∗∗F = limn→∞DV fn ∈ Rp(DV ).

Now, for functions ψ ∈ Dp(
√
L) and φ ∈ Dq(

√
L∗),

〈DV ψ,B
∗DV φ〉 = 〈Lψ, φ〉 = 〈

√
Lψ,
√
L∗φ〉.

Furthermore, approximating a function f ∈ Lp(µ) by a sequence (f0 +√
Lfn)n≥1 with f0 ∈ Np(

√
L) and fn ∈ Dp(

√
L) we obtain

〈Rf,B∗DV φ〉 = lim
n→∞

〈DV fn, B
∗DV φ〉

= lim
n→∞

〈
√
Lfn,

√
L∗φ〉

= 〈f − f0,
√
L∗φ〉

= 〈f,
√
L∗φ〉.

Hence for the duality between Lp(µ) and Lq(µ) we obtain

〈F −RR∗∗BF,B∗DV φ〉 = 〈F,B∗DV φ〉 − 〈F,B∗R∗
√
L∗φ〉 = 0.

This shows that F −RR∗∗BF ∈ Np(D∗VB). This completes the proof of (4.9).
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We continue with the proof of (4.10). Assume that G ∈ Dp(D∗VB) satisfies
D∗VBG = 0. Then for all f ∈ Dq(DV ) we have 〈B∗DV f,G〉 = 0, where the
duality is between Lq(µ;H) and Lp(µ;H).

Let Ip,m and Iq,m denote the projections in Lp(µ) and Lq(µ) onto the
m-th Wiener-Itô chaoses. The ranges of Ip,m and Iq,m are isomorphic by the
equivalence of norms on the Wiener-Itô chaoses. Note that I∗p,m = Iq,m. Then
Ip,m ⊗ I and Iq,m ⊗ I are bounded projections in Lp(µ;H) and Lq(µ;H). Let
jp,m denote the induced isomorphism of the range of Ip,m ⊗ I onto the range
of I2,m ⊗ I.

For cylindrical polynomials f ∈ FP(E; D(V ))∩H(m) we have the identity
B∗DV f = (Iq,m−1 ⊗ I)B∗DV f and

[jp,m−1(Ip,m−1 ⊗ I)G,B∗DV f ] = 〈(Ip,m−1 ⊗ I)G,B∗DV f〉
= 〈G, (Iq,m−1 ⊗ I)B∗DV f〉
= 〈G,B∗DV f〉
= 0.

(4.11)

In the first term, the duality is the inner product of L2(µ;H).
On the other hand, if f ∈ FP(E; D(V )) ∩ H(n) for some n 6= m, then

j∗p,m−1 = jq,m−1 implies

[jp,m−1(Ip,m−1 ⊗ I)G,B∗DV f ]
= 〈(Ip,m−1 ⊗ I)G,B∗DV f〉
= 〈(Ip,m−1 ⊗ I)G, (Iq,n−1 ⊗ I)B∗DV f〉
= [jp,n−1(Ip,n−1 ⊗ I)(Ip,m−1 ⊗ I)G,B∗DV f ]
= 0,

(4.12)

since DV f is in the (n − 1)-th chaos; in the last step we used the L2(µ)-
orthogonality of the chaoses.

Since the cylindrical polynomials form a core for D(DV ) by Lemma
1.35 and B is bounded on H, we conclude from (4.11) and (4.12) that
jp,m−1(Im−1⊗I)G annihilates R(B∗DV ) and therefore it belongs to N(D∗VB).

Next we claim that if G ∈ Rp(DV ), then jp,m−1(Ip,m−1 ⊗ I)G ∈ R(DV ).
Indeed, from G = limk→∞DV gk in Lp(µ;H) it follows that

jp,m−1(Ip,m−1 ⊗ I)G = lim
k→∞

DV jp,m(Ip,m ⊗ I)gk ∈ R(DV ).

Combining what we have proved, we see that if G ∈ Rp(DV ) ∩ Np(D∗VB),
then jp,m−1(Ip,m−1⊗I)G ∈ R(DV )∩N(D∗VB). Hence, jp,m−1(Ip,m−1⊗I)G = 0
by the Hodge decomposition of L2(µ;H) [12]. It follows that (Ip,m−1⊗I)G = 0
for all m ≥ 1, and therefore G = 0. This concludes the proof of (4.10). �

The next application is included for reasons of completeness.
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Corollary 4.40. If the equivalent conditions of Theorem 4.37(c) hold, then

Rp(D∗VB) = Rp(D∗V ).

Note that by the second part of Theorem 4.39 it is immaterial whether we view
D∗VB as an unbounded operator from Lp(µ;H) to Lp(µ) or from Rp(D∗VB)
to Lp(µ).

Proof. By the first part of Theorem 4.39 (first applied to B and then to I)
we have the deompositions

Lp(µ) = Np(DV )⊕ Rp(D∗VB) = Np(DV )⊕ Rp(D∗V ),

where both D∗VB and D∗V are viewed as closed densely defined operators
from Rp(DV ) to Lp(µ). The corollary will follow if we check that Rp(D∗VB) ⊆
Rp(D∗V ). This inclusion is trivial if we may interpret D∗VB and D∗V as un-
bounded operators from Lp(µ;H) to Lp(µ). By the preceding remark, we
may indeed do so for D∗VB. The proof will be finished by checking that the
conditions of Theorem 4.37(c) also hold with B replaced by I, since then we
may do the same for D∗V . But this follows from the fact that V V ∗, being
selfadjoint on R(V ), admits a bounded H∞-calculus on R(V ). �

We already showed in Theorem 4.32 that the operator Π is γ-bisectorial
on the space Lp(µ) ⊕ R(DV ). The Hodge decomposition from Theorem 4.39
allows us to prove a stronger result:

Theorem 4.41 (γ-bisectoriality). Let 1 < p < ∞. If the equivalent condi-
tions of Theorem 4.37(c) hold, then Π is γ-bisectorial on Lp(µ)⊕ Lp(µ;H).

Proof (of Theorem 4.41). We use the notation

X1 := Lp(µ)⊕ Rp(DV ) and X2 := Np(D∗VB).

Fix t ∈ R\{0}. First we show that it−Π is injective on Lp(µ)⊕Lp(µ;H).
Theorem 4.39 implies the decomposition

Lp(µ)⊕ Lp(µ;H) = X1 ⊕X2. (4.13)

Take x = x(1) + x(2) ∈ X1 ⊕ X2, and suppose that (it − Π)x = 0. Then
(it − Π)x(1) = 0 and itx(2) = 0. Thus x(1) = x(2) = 0, since Π|X1 in X1 is
bisectorial.

Next we show that it−Π is surjective on Lp(µ)⊕Lp(µ;H). Let y(1) ∈ X1

and y(2) ∈ X2. The equation (it−Π)(x(1) + x(2)) = y(1) + y(2) is solved by

x(1) = (it−Π|X1)−1y(1) and x(2) = (it)−1y(2).

This implies that it−Π is surjective.
Using (4.13) and the sectoriality of Π on X1 it follows that
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‖x(1) + x(2)‖ ≤ ‖(it−Π|X1)−1‖‖y(1)‖+ |t|−1‖y(2)‖
. t−1

(
‖y(1)‖+ ‖y(2)‖

)
. t−1‖y(1) + y(2)‖,

which is the desired resolvent estimate that shows that Π is bisectorial on
X1 ⊕X2.

To show γ-bisectoriality of Π on Lp(µ)⊕Lp(µ;H) we take yj = y
(1)
j +y(2)

j ∈
X1⊕X2. Let (rj)j≥1 be a Rademacher sequence. Using the γ-bisectoriality of
Π|X1 we obtain

E
∥∥∥ k∑
j=1

rjtj(itj −Π)−1yj

∥∥∥
p
≤ E

∥∥∥ k∑
j=1

rjtj(itj −Π|X1)−1y
(1)
j

∥∥∥
p

+ E
∥∥∥ k∑
j=1

rjtj(itj −Π|X2)−1y
(2)
j

∥∥∥
p

. E
∥∥∥ N∑
j=1

rjy
(1)
j

∥∥∥
p

+ E
∥∥∥ k∑
j=1

rjtj(t−1
j y

(2)
j )
∥∥∥
p

. E
∥∥∥ k∑
j=1

rjyj

∥∥∥
p
.

By an application of the Kahane-Khintchine inequalities we conclude that
{t(it−Π)−1 : t ∈ R\{0}} is γ-bounded on Lp(µ)⊕Lp(µ;H). This completes
the proof. �

4.5 Domain characterisation

We continue with the proof of the following result, already announced in the
introduction of this thesis.

Theorem 4.42 (Domain of L). Let 1 < p < ∞, and let the equivalent
conditions of Theorem 0.1 be satisfied. Then we have equality of domains

Dp(L) = Dp(D2
V ) ∩ Dp(DA)

with equivalence of norms

‖f‖p + ‖Lf‖p h ‖f‖p + ‖DV f‖p + ‖D2
V f‖p + ‖DAf‖p.

In the remainder of this section it will be a standing assumption that
the equivalent conditions of Theorem 0.1 are satisfied. As we have already ob-
served in Theorem 3.13, the corresponding equivalences obtained by replacing
B with B∗ then also hold.
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We will use the bounded analytic C0-semigroups

P (k)(t) = P (t)⊗ S⊗k(t),

which are defined on the spaces

Lp(k) := Lp(µ;H⊗k), k = 1, 2.

Note that Lp(1) = Lp(µ;H) and P (1) coincides with P on the closed subspace

Rp(DV ). The generators of P (k) will be denoted by −L(k). The semigroups
generated by −

√
I + L(k) will be denoted by Q

(k)
.

In Propositions 1.36 and 1.37 we considered the closed operators

D
(1)
V : D(D(1)

V ) ⊆ Lp(µ;H)→ Lp(µ;H⊗2),

D2
V : D(D2

V ) ⊆ D(DV )→ Lp(µ;H⊗2).

In the remainder of this section we will write

DV := D
(1)
V .

We remark that for t > 0 the operators

DV P (1)(t) = (DV P (t))⊗ S(t), DV P
∗
(1)(t) = (DV P

∗(t))⊗ S∗(t)

are bounded from Lp(1) to Lp(2) as a consequence of Theorem 4.18.

Proposition 4.43. Let 1 < p <∞.

(i) The collections {
√
tDV P (1)(t) : t > 0} and {

√
tDV P

∗
(1)(t) : t > 0} are

γ-bounded in L(Lp(1), L
p
(2)).

(ii) The following square function estimates hold for F ∈ Lp(1):∥∥∥(∫ ∞
0

‖
√
tDV P (1)(t)F‖2

dt

t

)1/2∥∥∥
p
. ‖F‖p,∥∥∥(∫ ∞

0

‖
√
tDV P

∗
(1)(t)F‖2

dt

t

)1/2∥∥∥
p
. ‖F‖p.

(iii) The domain inclusions Dp(
√
L(1)) ⊆ Dp(DV ) and Dp(

√
L∗(1)) ⊆ Dp(DV )

hold with norm estimates

‖DV F‖p . ‖F‖p + ‖
√
L(1)F‖p and ‖DV F‖p . ‖F‖p + ‖

√
L∗(1)F‖p.

Proof. (i): The γ-boundedness is a consequence from (an easy Hilbert space-
valued extension of) Proposition 5.6 combined with Theorem 4.18.

(ii): Since A has a bounded H∞-calculus on H of angle < 1
2π, the same

holds for A∗. Proposition 4.34 implies that L(1) and L∗(1) have bounded H∞-
functional calculi on Lp(1) of angle < 1

2π. The domain inclusions Dp(L(1)) ⊆
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Dp(DV ) and Dp(L∗(1)) ⊆ Dp(DV ) follow from (i) by taking Laplace transforms.
By combining (i) and Theorem 5.47 we obtain the desired result.

(iii): Combining the fact that
√
I + L(2) has a bounded H∞-calculus

of angle < 1
2π with Theorem 5.40, the commutation relation DV P (1)(t) =

P (2)(t)DV , the H-valued analogue of Lemma 4.20, and the first estimate of
(ii), for all F ∈ Dp(L(1)) we obtain

‖DV F‖p .
∥∥∥(∫ ∞

0

‖t
√
I + L(2)Q(2)

(t)DV F‖2
dt

t

)1/2∥∥∥
p

=
∥∥∥(∫ ∞

0

‖tDVQ(1)
(t)
√
I + L(1)F‖2

dt

t

)1/2∥∥∥
p

≤
∥∥∥(∫ ∞

0

‖
√
tDV e

−tP (1)(t)
√
I + L(1)F‖2

dt

t

)1/2∥∥∥
p

≤
∥∥∥(∫ ∞

0

‖
√
tDV P (1)(t)

√
I + L(1)F‖2

dt

t

)1/2∥∥∥
p

.
∥∥√I + L(1)F

∥∥
p

h ‖F‖p +
∥∥√L(1)F

∥∥
p
.

This gives the first estimate. Since Dp(L(1)) is a core for Dp(
√
L(1)), the

domain inclusion follows as well.
To prove the second estimate we put T := P ∗ ⊗ S∗ ⊗ S∗, where S∗ is

the bounded analytic semigroup generated by −V V ∗B∗; this notation is as
in Theorem 3.13. Note that the negative generator C of T has a bounded
H∞-calculus of angle < 1

2π; this follows from the fact that if Theorem 4.37(c)
holds for B, then it also holds for B∗ (see Theorem 3.13) and therefore the
negative generators of S∗ and S∗ both have bounded H∞-calculi of angle
< 1

2π. Let R be the semigroup generated by −
√
I + C. Using the identity

DV P
∗
(1)(t)F = T (t)DV F,

and arguing as above, for all F ∈ Dp(L∗(1)) we obtain

‖DV F‖p .
∥∥∥(∫ ∞

0

‖t
√
I + CR(t)DV F‖2

dt

t

)1/2∥∥∥
p

=
∥∥∥(∫ ∞

0

‖tDVQ
∗
(1)

(t)
√
I + L∗(1)F‖2

dt

t

)1/2∥∥∥
p

≤
∥∥∥(∫ ∞

0

‖
√
tDV e

−tP ∗(1)(t)
√
I + L∗(1)F‖2

dt

t

)1/2∥∥∥
p

≤
∥∥∥(∫ ∞

0

‖
√
tDV P

∗
(1)(t)

√
I + L∗(1)F‖2

dt

t

)1/2∥∥∥
p

.
∥∥√I + L∗(1)F

∥∥
p

h ‖F‖p +
∥∥√L∗(1)F∥∥p.
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The second domain inclusion now follows from the fact that Dp(L∗(1)) is a core

for Dp(
√
L∗(1)). �

In the following theorem we give a characterisation of Dp(
√
L(1)). Since

√
L =

√
L(1) on Rp(DV ), this gives a further equivalence of norms for

√
L on

Rp(DV ), different from the one in Theorem 0.1. In the proof of Theorem 4.42
we use both equivalences to determine the domain of L.

First we need a simple lemma.

Lemma 4.44. Let 1 < p <∞. The semigroup Q
(1)

restricts to C0-semigroups

on the space Dp(DV ) ∩ Dp(
√
I ⊗A).

Proof. It suffices to prove the result with Q
(1)

replaced by P (1); the latter is

readily seen to restrict to a C0-semigroup on Dp(DV ) ∩ Dp(
√
I ⊗A) by the

identities DV P(1)(t) = P (2)(t)DV and
√
I ⊗AP (1)(t) = P (1)(t)

√
I ⊗A. �

Theorem 4.45. Let 1 < p <∞. We have equality of domains

Dp(
√
L(1)) = Dp(DV ) ∩ Dp(

√
I ⊗A),

with equivalence of norms

‖F‖p +
∥∥√L(1)F

∥∥
p

h ‖F‖p + ‖DV F‖p + ‖
√
I ⊗AF‖p,

Proof. By a result of Kalton and Weis [89, Theorem 6.3], applied to the sums
L(1) = L⊗ I + I ⊗A and L∗(1) = L∗ ⊗ I + I ⊗A∗, we have the estimates

‖(I ⊗A)F‖p . ‖F‖p + ‖L(1)F‖p, F ∈ Dp(L(1))

‖(I ⊗A∗)F‖p . ‖F‖p + ‖L∗(1)F‖p, F ∈ Dp(L∗(1)).

Since the square root domains equal the complex interpolation spaces at ex-
ponent 1

2 for sectorial operators with bounded imaginary powers [78, Theorem
6.6.9], by interpolating the inclusions

Dp(L(1)) ↪→ Dp(I ⊗A), Dp(L∗(1)) ↪→ Dp(I ⊗A∗),

with the identity operator, we obtain the estimates

‖
√
I ⊗AF‖p . ‖F‖p +

∥∥√L(1)F
∥∥
p
, F ∈ Dp(L(1))

‖
√
I ⊗A∗F‖p . ‖F‖p +

∥∥√L∗(1)F∥∥p, F ∈ Dp(L∗(1)).
(4.14)

Combining these estimates with Proposition 4.43 we obtain
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‖F‖p + ‖DV F‖p + ‖
√
I ⊗AF‖p . ‖F‖p +

∥∥√L(1)F
∥∥
p
, F ∈ Dp(L(1))

‖F‖p + ‖DV F‖p + ‖
√
I ⊗A∗F‖p . ‖F‖p +

∥∥√L∗(1)F∥∥p, F ∈ Dp(L∗(1)).

Next we prove the reverse estimates. For F ∈ Dp(L) ⊗ Dp(A) and G ∈
Dq(L∗)⊗ Dp(A∗) ( 1

p + 1
q = 1) we have F ∈ Dp(L(1)), G ∈ Dq(L∗(1)), and

〈
√
I + L(1)F,G〉 = 〈(I + L(1))F, 1/

√
L∗(1) + IG〉

= 〈F, 1/
√
I + L∗(1)G〉+ 〈(L⊗ I)F, 1/

√
I + L∗(1)G〉

+ 〈(I ⊗A)F, 1/
√
I + L∗(1)G〉

= 〈F, 1/
√
I + L∗(1)G〉+ 〈BDV F,DV /

√
I + L∗(1)G〉

+ 〈
√
I ⊗AF,

√
I ⊗A∗/

√
I + L∗(1)G〉.

Using the boundedness of the three operators 1/
√
I + L∗(1), DV /

√
I + L∗(1)

(by Proposition 4.43(iii)), and
√
I ⊗A∗/

√
I + L∗(1) (by the second estimate

in (4.14)), we find∥∥√I + L(1)F
∥∥
p

= sup
‖G‖q≤1

|〈
√
I + L(1)F,G〉|

≤ sup
‖G‖q≤1

‖F‖p ‖1/
√
I + L∗(1)G‖q

+ ‖B‖ ‖DV F‖p ‖DV /
√
I + L∗(1)G‖q

+ ‖
√
I ⊗AF‖p ‖

√
I ⊗A∗/

√
I + L∗(1)G‖q

. ‖F‖p + ‖DV F‖p + ‖
√
I ⊗AF‖p.

The estimate∥∥√I + L∗(1)F
∥∥
p
. ‖F‖p + ‖DV F‖p + ‖

√
I ⊗A∗F‖p

is proved similarly and will not be needed.
It remains to prove the equality of domains. Since Dp(L)⊗D(A) is a core

for Dp(L(1)), it is also a core for Dp(
√
L(1)). Using this, the domain inclusion

Dp(
√
L(1)) ⊆ Dp(DV ) ∩ Dp(

√
I ⊗A) follows, and the equivalence of norms

extends to all F ∈ Dp(
√
L(1)).

Again by the equivalence of norms, Dp(
√
L(1)) is closed in Dp(DV ) ∩

Dp(
√
I ⊗A). It remains to prove that the inclusion is dense. This follows

from Lemma 4.44, since for F ∈ Dp(DV ) ∩ Dp(
√
I ⊗A) and t > 0 we

have Q
(1)

(t)F ∈ Dp(
√
L(1)) and Q

(1)
(t)F → F in the norm of Dp(DV ) ∩

Dp(
√
I ⊗A) as t ↓ 0. �
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Recall that D denotes the Malliavin derivative. Since A is a closed op-
erator, it follows from Theorem 1.33 that the operator DA, initially defined
on FC1

b(E; D(A)), is closable as an operator from Lp(µ) into Lp(µ;H) for
1 < p <∞. We denote its closure by DA.

Lemma 4.46. Let 1 < p <∞. The semigroup P restricts to a C0-semigroup
on the space Dp(D2

V ) ∩ Dp(DA).

Proof. A straightforward argument shows that P (t)Dp(D2
V ) ⊆ Dp(D2

V ) and

D2
V P (t)f := P (2)(t)D

2
V f, f ∈ Dp(D2

V ).

Similarly, we have P (t)Dp(DA) ⊆ Dp(DA) and

DAP (t)f = e−t(P (t)⊗ I)DAf, f ∈ Dp(DA).

These identities easily imply the result. �

Proof (Proof of Theorem 4.42). Using the fact that Dp(L) ⊆ Dp(DV ), Propo-
sition 4.28, the domain equality Dp(

√
L) = Dp(D∗VB) (see Proposition 4.38),

Theorem 4.45, the domain equality D(
√
A) = D(V ∗B) on R(V ) (see Proposi-

tion 3.14), and the definition of DA, for f ∈ Dp(L) we obtain

‖f‖p + ‖Lf‖p h ‖f‖p + ‖DV f‖p + ‖Lf‖p
= ‖f‖p + ‖DV f‖p + ‖(D∗VB)DV f‖p
h ‖f‖p + ‖DV f‖p + ‖

√
LDV f‖p

h ‖f‖p + ‖DV f‖p + ‖D2
V f‖p + ‖

√
ADV f‖p

h ‖f‖p + ‖DV f‖p + ‖D2
V f‖p + ‖(V ∗B)DV f‖p

h ‖f‖p + ‖DV f‖p + ‖D2
V f‖p + ‖DAf‖p,

This proves the equivalence of norms and the domain inclusion Dp(L) ⊆
Dp(D2

V ) ∩ Dp(DA). To obtain equality of domains it remains to show that
this inclusion is both closed and dense. Closedness follows easily from the
norm estimate and density follows from Lemma 4.46 in the same way as in
Theorem 4.45. �

4.6 Notes

An approach to Kolmogorov equations via sectorial forms can be found in the
lecture notes by Röckner [148].

The main results (Theorem 4.37 and Theorem 4.42) have a long history.
The special case A = I is a fundamental result in Malliavin calculus due to
P.-A. Meyer [128]. Various analytic [75, 113, 142, 163] and probabilistic [74]
proofs have been given. Perhaps the simplest is the analytic proof by Pisier
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[146] which uses the transference principle of Coifman and Weiss [38]. The
one-dimensional case had already been proved much earlier by Muckenhoupt
[129].

For more general Ornstein-Uhlenbeck operators, the domain characterisa-
tion for p = 2 is due to Lunardi [102] in finite dimensions and Da Prato and
Goldys in infinite dimensions [43]. In the non-symmetric finite dimensional
case the Lp-domain has been characterised by Metafune, Prüss, Rhandi, and
Schnaubelt [125]. See also [114] for the boundedness of the Riesz transforms
and a weak-(1,1) type result.

Boundedness of the Riesz transforms in the symmetric infinite dimensional
Lp-setting has been proved by Shigekawa [152] (see also [154]). In this setting
Chojnowska-Michalik and Goldys [32] proved two-sided bounds for higher
order Riesz transforms. In particular they characterised the domain of sym-
metric Ornstein-Uhlenbeck operators. The results in the infinite dimensional
non-symmetric setting presented here can be found in a joint paper with van
Neerven [107].

Gradient estimates in Lp for Ornstein-Uhlenbeck semigroups have been
proved earlier (see, e.g., [45, Proposition 10.3.1]). However, the randomised
boundedness of these operators (Theorem 4.18) is new.





5

Appendix: Tools from Operator Theory

In this chapter we present a collection of results from operator theory in-
volving the notions of randomised boundedness, radonifying operators, and
H∞-functional calculus. These results are our main tools in the study of el-
liptic operators on Wiener spaces in Chapter 4.

We work in a general Banach space setting and use the language of
radonifying operators, although for the applications in Chapter 4 it would
be sufficient to consider square functions in Hilbert spaces and Lp-spaces.
Apart from having the advantage of covering the Hilbertian and Lp-setting at
the same time, we believe that this allows to present the proofs in the most
transparent way. We do not attempt to state all results in the greatest possible
generality, but instead prefer to give formulations which are flexible enough
for applications as in Chapter 4.

Throughout this chapter we will use the following notation:

• X,Y and Z are Banach spaces,
• H , H and Hn are Hilbert spaces,
• (M,µ), (Mn, µn) are σ-finite measure spaces,
• ϕ := (ϕj)j≥1 is a sequence of i.i.d. random variables, being either R or γ,

where
– R := (rj)j≥1 is a sequence of independent Rademacher variables, i.e.,

P(rj = 1) = P(rj = −1) = 1
2 for each j ≥ 1.

– γ := (γj)j≥1 is a sequence of independent standard Gaussian variables,
i.e., P(γj ≤ λ) = 1√

2π

∫ λ
−∞ exp(− 1

2ξ
2) dξ, for each λ ∈ R and j ≥ 1.

Such sequences will be called Rademacher sequences and Gaussian se-
quences.

5.1 Randomised boundedness

In this chapter we will study various operator theoretic notions involving
moments of Banach space-valued random sums. Second moments in Hilbert
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spaces are easy to compute. Indeed, the orthogonality of ϕ in L2(P) implies
that

E
∥∥∥ k∑
j=1

ϕjhj

∥∥∥2

=
k∑
j=1

‖hj‖2 (5.1)

for all h1, . . . , hk ∈ H. Consequently, if T is a uniformly bounded collection
of operators on H, then

(
E
∥∥∥ k∑
j=1

ϕjTjxj

∥∥∥2)1/2

≤ sup
T∈T

‖T‖
(
E
∥∥∥ k∑
j=1

ϕjxj

∥∥∥2)1/2

. (5.2)

In Banach spaces this randomised boundedness property is no longer auto-
matic. This motivates the following definition.

Definition 5.1. A collection of bounded linear operators T ⊆ L(X,Y ) is said
to be ϕ-bounded if there exists C ≥ 0 such that for all k = 1, 2, . . . and all
choices of x1, . . . , xk ∈ X and T1, . . . , Tk ∈ T , we have

E
∥∥∥ k∑
j=1

ϕjTjxj

∥∥∥2

≤ C2E
∥∥∥ k∑
j=1

ϕjxj

∥∥∥2

.

The infimum over all C ≥ 0 for which the estimate holds is denoted by ϕ(T ).

Although Rademacher sums and Gaussian sums behave similar in many
respects (see Remark 5.2(vi) below), both classes have their advantages in
particular situations; Rademachers are especially powerful when dealing with
unconditionally convergent series, whereas Gaussians are more natural in the
presence of stochastic integrals, radonifying operators and Malliavin calculus.
In the sequel we exploit the nice features of both.

We collect some basic properties of ϕ-boundedness:

Remark 5.2. (i) Every ϕ-bounded set is uniformly bounded.
(ii) Kahane’s contraction principle (see, e.g., [52, Theorem 12.2]) asserts that

for 1 ≤ p <∞, for aj ∈ C with |aj | ≤ 1, and xj ∈ X,

(
E
∥∥∥ k∑
j=1

ajϕjxj

∥∥∥p)1/p

≤ 2
(
E
∥∥∥ k∑
j=1

ϕjxj

∥∥∥p)1/p

.

In other words, the collection {aIX : |a| ≤ 1} is ϕ-bounded.
(iii) If S, T ⊆ L(X,Y ) are ϕ-bounded, then ST := {ST : S ∈ S, T ∈ T }

and S ∪ T are ϕ-bounded as well. In particular, since singletons are ϕ-
bounded, all finite sets of operators are ϕ-bounded.
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(iv) We have already seen in (5.2) that every uniformly bounded subset of
operators on a Hilbert space is ϕ-bounded. It follows from a famous result
by Kwapień [95] that the following converse holds: if every uniformly
bounded collection of operators on X is ϕ-bounded, then X is isomorphic
to a Hilbert space.

(v) The Kahane-Khintchine inequalities (see, e.g., [52, Theorem 11.1]) say
that for any x1, . . . , xk ∈ X and 1 ≤ p <∞ one has(

E
∥∥∥ k∑
j=1

ϕjxj

∥∥∥2)1/2

h
(
E
∥∥∥ k∑
j=1

ϕjxj

∥∥∥p)1/p

, (5.3)

with universal constants depending only on p. Consequently, one may
replace the exponents 2 in the definition of ϕ-boundedness by arbitrary
p ∈ [1,∞); at worst this changes the value of the constant C.

(vi) One can always estimate Rademacher sums by Gaussian sums (see, e.g.,
[131, Corollary 3.6]): For 1 ≤ p <∞ and x1, . . . , xk ∈ X,(

E
∥∥∥ k∑
j=1

rjxj

∥∥∥p)1/p

≤
√

π
2

(
E
∥∥∥ k∑
j=1

γjxj

∥∥∥p)1/p

.

If X has finite cotype (in particular if X is a closed subspace of
Lp(µ; H )), then the reverse estimate holds as well (with a different con-
stant depending on X). Consequently, in these spaces the notions of
R-boundedness and γ-boundedness coincide.

(vii) If T is ϕ-bounded, then the closure with respect to the strong opera-
tor topology of the absolutely convex hull of T is ϕ-bounded as well.
Moreover, ϕ(T SOT

) ≤ 2ϕ(T ). For a proof we refer to [94, Theorem 2.13].

A useful consequence of the last remark is the following result.

Proposition 5.3. Let T ⊆ L(X,Y ) be ϕ-bounded, and let f : M → L(X,Y )
be a function with values in T such that ξ 7→ f(ξ)x is strongly µ-measurable
for all x ∈ E. For φ ∈ L1(µ) define

Tφ,fx :=
∫
M

φ(ξ)f(ξ)x dµ(ξ), x ∈ X.

Then the collection {Tφ,f : ‖φ‖L1(µ) ≤ 1} is ϕ-bounded in L(X,Y ).

Proof. See [94, Corollary 2.14]. �

We need the following duality result for ϕ-bounded families. According to
a celebrated result in Banach space theory by Pisier [145], X is K-convex (see
also Remark 11.7) if and only if X has nontrivial type. Examples of K-convex
spaces include the spaces Lp(µ; H ) for 1 < p <∞.
Proposition 5.4. If X and Y are K-convex Banach spaces, then a family
T ⊆ L(X,Y ) is ϕ-bounded if and only if the adjoint family T ∗ ⊆ L(Y ∗, X∗)
is ϕ-bounded.

Proof. See [87, Proposition 3.5]. �
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Randomised boundedness in Lp-spaces

In Lp-spaces, randomised boundedness is closely related to square function
estimates in the spirit of harmonic analysis:

Proposition 5.5. Let 1 ≤ p <∞. A family T of operators from Lp(µ1;H1) to
Lp(µ2;H2) is ϕ-bounded if and only if there exists a constant C ≥ 0 such that
for all k ≥ 1 and all choices of T1, . . . , Tk ∈ T and F1, . . . Fk ∈ Lp(µ1;H1),

∥∥∥( k∑
j=1

‖TjFj‖2H2

)1/2∥∥∥
Lp(µ2)

≤ C
∥∥∥( k∑

j=1

‖Fj‖2H1

)1/2∥∥∥
Lp(µ1)

.

Proof. See [94, Remark 2.9] for the case H1 = H2 = I. The Hilbert space
version is an easy extension. �

The next result may be known to specialists, but since we could not find
a reference for it we include a proof.

Proposition 5.6. Let 1 ≤ p < ∞. If T ⊆ L(Lp(µ)) is ϕ-bounded and S ⊆
L(H) is bounded, then T ⊗ S ⊆ L(Lp(µ;H)) is ϕ-bounded.

Proof. Since T ⊗ S = (T ⊗ I)(I ⊗ S), and I ⊗ S is ϕ-bounded by Fubini’s
theorem, it suffices to show that T ⊗ I is ϕ-bounded.

Let (hi)ni=1 be an orthonormal system in H and let F1, . . . , Fk be functions
in Lp(µ;H) of the form Fj :=

∑n
i=1 fij ⊗ hi. Note that functions of this form

are dense in Lp(µ;H). Let (ϕi)i≥1 and (ϕ̃i)i≥1 be independent ϕ-sequences.
Then, putting gi :=

∑k
j=1 ϕjTjfij , and using Fubini’s theorem,

E
∥∥∥ k∑
j=1

ϕj(Tj ⊗ I)Fj
∥∥∥p
p

= E
∥∥∥ k∑
j=1

ϕj

n∑
i=1

Tjfij ⊗ hi
∥∥∥p
p

= E
∫
M

∥∥∥ k∑
j=1

ϕj

n∑
i=1

Tjfij ⊗ hi
∥∥∥p dµ = E

∫
M

∥∥∥ n∑
i=1

gi ⊗ hi
∥∥∥p dµ

h E
∫
M

Ẽ
∣∣∣ n∑
i=1

ϕ̃igi

∣∣∣p dµ = ẼE
∥∥∥ k∑
j=1

ϕjTj

( n∑
i=1

ϕ̃ifij

)∥∥∥p
p

. ẼE
∥∥∥ k∑
j=1

ϕj

( n∑
i=1

ϕ̃ifij

)∥∥∥p
p

h E
∥∥∥ k∑
j=1

ϕjFj

∥∥∥p
p
.

The last step follows by performing the computation in reverse order. The
result follows from the Kahane-Khintchine inequalities (5.3). �
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5.2 Radonifying operators

In this section we will study a class of operators which play the role of Lp-
square functions in a general Banach space setting.

For h ∈ H and x ∈ X we let h⊗ x denote the rank-1 operator from H to
X defined by

h⊗ x : g 7→ [g, h]x, g ∈ H.

Definition 5.7. We denote by γ(H,X) the completion of the finite rank op-
erators from H to X with respect to the norm∥∥∥ k∑

j=1

hj ⊗ xj
∥∥∥
γ(H,X)

:=
(
E
∥∥∥ k∑
j=1

γjxj

∥∥∥2)1/2

,

where it is assumed that the vectors h1, . . . , hk are orthonormal in H. Opera-
tors in L(H,X) belonging to γ(H,X) are called radonifying.

Remark 5.8. (i) It is not difficult to check that ‖T‖γ(H,X) does not depend
on the choice of the orthonormal system. Moreover, since ‖T‖L(H,X) ≤
‖T‖γ(H,X) for all finite rank operators T ∈ L(H,X), it follows that
γ(H,X) ↪→ L(H,X).

(ii) If H is separable and T ∈ γ(H,X), then

‖T‖γ(H,X) =
(
E
∥∥∥ ∞∑
j=1

γjThj

∥∥∥2)1/2

,

where (hj)j≥1 is an arbitrary orthonormal basis of H (see, e.g., [131,
Theorem 5.15]).

(iii) The terminology is explained by the fact that an operator T ∈ L(H,X)
is radonifying if and only if there exists a Gaussian Radon measure on X
whose covariance operator equals TT ∗ (see, e.g., [131, Theorem 5.16]).

The norm of a radonifying operator is easy to compute if the Banach space
is a Hilbert or Lp-space:

Proposition 5.9. (i) We have

‖T‖γ(H,H ) = ‖T‖L2(H,H ),

where ‖ · ‖L2(H,H ) denotes the Hilbert-Schmidt norm.
(ii) Let 1 ≤ p <∞. If H is separable and (hj)j≥1 is an orthonormal basis of

H, then

‖T‖γ(H,Lp(µ;H )) h
∥∥∥( ∞∑

j=1

‖Thj‖2H
)1/2∥∥∥

Lp(µ)
,

with constants depending only on p.
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Proof. See [131, Theorems 5.19 & 5.20]. �

The following result is a convenient reformulation of the right ideal prop-
erty of γ(H,X).

Lemma 5.10. Let T ∈ L(H). Then the operator T⊗ defined by

T⊗ : h⊗ x 7→ (Th)⊗ x, h ∈ H,x ∈ X,

uniquely extends to a bounded operator on γ(H,X) of norm

‖T⊗‖L(γ(H,X)) ≤ ‖T‖L(H).

Proof. See [131, Proposition 5.11]. �

This result admits a useful generalisation to collections of operators if the
Banach space has the following geometric property introduced by Pisier [144].
Let (rk)k≥1 and (rk)k≥1 be independent Rademacher sequences. We say that
X has property (α) if there exists a constant C > 0 depending only on X such
that for any xjk ∈ X and αjk ∈ {−1, 1},

(
E
∥∥∥ n∑
j,k=1

αijrjrkxjk

∥∥∥2)1/2

≤ C
(
E
∥∥∥ n∑
j,k=1

rjrkxjk

∥∥∥2)1/2

.

Proposition 5.11. If T ⊆ L(H) is uniformly bounded and X has property
(α), then {T⊗ : T ∈ T } is ϕ-bounded in L(γ(H,X)).

Proof. See [76, Theorem 3.18]. �

We continue with an observation about iterated radonifying norms which
follows from the Kahane-Khintchine inequalities and Fubini’s theorem.

Proposition 5.12. Suppose that X has property (α). The mapping

h1 ⊗ (h2 ⊗ x) 7→ (h1 ⊗ h2)⊗ x, h1 ∈ H1, h2 ∈ H2, x ∈ X,

extends uniquely to an isomorphism of Banach spaces

γ(H1, γ(H2, X)) ' γ(H1 ⊗H2, X).

Proof. See [90] or [136, Corollary 3.5]. �

The following trace duality result will be useful.

Proposition 5.13. If T ∈ γ(H,X) and S ∈ γ(H,X∗), then

tr(T ∗S) ≤ ‖T‖γ(H,X)‖S‖γ(H,X∗).

Proof. See [90, Proposition 5.2]. �
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The case H = L2(σ) and representation by functions

• In the remainder of this section we let (S, σ) be a σ-finite measure space.

In this section we will study the space γ(L2(σ), X).
Our first goal is to study integral operators in γ(L2(σ), X), i.e. operators

which are formally given by

Tf :=
∫
S

f(s)F (s) dσ(s), f ∈ L2(S, σ),

for a suitable function F : S → X. This intuition is made precise in the
following definition:

Definition 5.14. Let the strongly σ-measurable function F : S → X be
scalarly-L2, i.e., for all x∗ ∈ X∗ the function s 7→ 〈F (s), x∗〉 is square in-
tegrable. We say that F represents an operator T ∈ γ(L2(σ), X) if

〈Tf, x∗〉 =
∫
S

f(s)〈F (s), x∗〉 dσ(s), f ∈ L2(σ), x∗ ∈ X∗.

In this case, with a slight abuse of notation, we simply write F ∈ γ(L2(σ), X).

The next result [20, 134] shows that radonifying norms reduce to square
functions in the special case that X = Lp(µ; H ).

Proposition 5.15. Let 1 ≤ p < ∞ and let F : S → Lp(µ; H ) be strongly
measurable and scalarly-L2. Then the function F represents an operator in
γ(L2(σ), Lp(µ; H )) if and only if(∫

S

‖F (s)‖2H dσ(s)
)1/2

∈ Lp(µ).

In this situation we have an equivalence of norms

‖F‖γ(L2(σ),Lp(µ;H )) h
∥∥∥(∫

S

‖F (s)‖2H dσ(s)
)1/2∥∥∥

Lp(µ)
.

The concepts of γ-boundedness and γ-radonifying operators are connected
by the following multiplier result from Kalton and Weis [90]. We use the
formulation from [131].

Proposition 5.16. Let (S, σ) be a σ-finite measure space, and let K : S →
L(X,Y ) be a function such that K(·)x is strongly σ-measurable for all x ∈ X.
If the set TK = {K(s) : s ∈ S} is γ-bounded, then the mapping

TK : f(·)⊗ x 7→ f(·)⊗K(·)x, f ∈ L2(σ), x ∈ X,

extends uniquely to a bounded operator TK from γ(L2(σ), X) to γ(L2(σ), Y )
of norm ‖TK‖ ≤ γ(TK).
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Proof. See [90, Proposition 4.11] or [131, Theorem 9.14]. �

We close this section by formulating a result from the previous section in
the L2-setting of the current section.

Proposition 5.17. Suppose that F : S → X and G : S → X∗ represent
operators in γ(L2(σ), X) and γ(L2(σ), X∗) respectively. Then∫

S

〈F (s), G(s)〉 dσ(s) ≤ ‖F‖γ(L2(σ),X)‖G‖γ(L2(σ),X∗).

Proof. This follows from Proposition 5.13. �

5.3 The H∞-calculus for bisectorial operators

In this section we consider the functional calculus for bisectorial operators.
The results in this section are all known, but in the literature they are often
formulated for sectorial operators and (for convenience) under an additional
injective assumption. For a detailed presentation of the functional calculus for
sectorial operators we refer to the monograph by Haase [78].

For θ ∈ (0, π), let

Σ+
θ := {z ∈ C \ {0} : | arg(z)| < θ}

denote the open sector around R+ of angle θ. We set Σ−θ := −Σ+
θ , and for

θ ∈ (0, 1
2π) we let

Σθ := Σ+
θ ∪Σ

−
θ

be the open bisector of angle θ.

Bisectorial operators

Let us now introduce the class of operators that will be studied.

Definition 5.18. An operator A : D(A) ⊆ X → X is said to be bisectorial of
angle ω ∈ (0, 1

2π) if σ(A) is contained in Σω and the set {z(z−A)−1 : z /∈ Σω′}
is uniformly bounded for each ω′ ∈ (ω, 1

2π). The infimum over all such angles
ω is denoted byω(A). An operator A is said to be bisectorial if it is bisectorial
for some ω ∈ (0, 1

2π).

The notion of sectoriality is defined similarly, replacing all bisectors Σθ by
bisectors Σ+

θ . In this case the infimum over all possible angles is denoted by
ω+(A) ∈ [0, π). Later on we will use the fact that the results in this section
remain valid for sectorial operators with obvious modifications.

A first consequence of the definition is the following useful lemma.
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Lemma 5.19. Let A be a bisectorial operator on X. The following equiva-
lences hold for x ∈ X:

(i) x ∈ D(A)⇔ limt→∞ it(it+A)−1x = x⇔ limt→∞A(it+A)−1x = 0.
(ii) x ∈ R(A)⇔ limt→0A(it+A)−1x = x⇔ limt→0 it(it+A)−1x = 0.

Proof. (i): For x ∈ D(A) we have x = it(it+A)−1x+ 1
it it(it+A)−1Ax. This

identity implies that limt→∞ it(it+A)−1x = x. By the uniform boundedness
of {it(it+A)−1 : t > 0} the latter identity extends to x ∈ D(A). The remaining
statements are now obvious.

(ii): is proved similarly using the identity x = A(it+A)−1x+ ity+ t2(it+
A)−1y for y ∈ D(A) and x := Ay. �

Proposition 5.20. A bisectorial operator A on a reflexive Banach space X
is densely defined and induces a direct sum decomposition

X = N(A)⊕ R(A).

Moreover, the part of A in R(A) is an injective and sectorial operator on R(A).

Proof. First we show that D(A) = X. Since ρ(A) 6= ∅, the operator A is
closed. It is even weakly closed, since weak and strong closures of linear sub-
spaces coincide. Take x ∈ X. Since (in(in + A)−1x)n≥1 is bounded, it has a
subsequence ink(ink +A)−1x converging weakly to some y ∈ X. This implies
that A(ink +A)−1x ⇀ x− y. Since (ink +A)−1x→ 0 and A is weakly closed,
it follows that x− y = 0, hence x = y ∈ D(A)

w
= D(A).

Lemma 5.19 implies that N(A) ∩ R(A) = {0}. For x ∈ X there exists a
sequence tn ↓ 0 such that itn(itn + A)−1x converges weakly to some z ∈ X.
Since itnA(itn+A)−1x→ 0 and A is weakly closed, we find that z ∈ N(A). The
weak convergence A(itn +A)−1 ⇀ x− z implies that x− z ∈ R(A)

w
= R(A),

hence x ∈ N(A) + R(A).
The straightforward proof of the final assertion is left to the reader. �

Holomorphic functional calculus

For θ ∈ (0, 1
2π) let H∞0 (Σθ) be the Dunford-Riesz class consisting of all

bounded holomorphic functions ψ : Σθ → C which satisfy an estimate

|ψ(z)| ≤ C |z|α

|i+ z|2α
, z ∈ Σθ,

for some α > 0 and C ≥ 0.

Definition 5.21. Let A be a bisectorial operator on X and let ψ be a function
in H∞0 (Σθ) with 0 ≤ ω(A) < γ < θ < 1

2π. The operator ψ(A) ∈ L(X) is
defined by

ψ(A)x :=
1

2πi

∫
∂Σγ

ψ(z)(z −A)−1x dz, x ∈ X,

where ∂Σγ is parametrised counter-clockwise (see the figure).
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Note that in this definition the decay of ψ guarantees that the integral exists
as a Bochner integral even if 0 ∈ σ(A). By Cauchy’s theorem its value does
not depend on the choice of γ ∈ (ω(A), θ).

ω(A) γ

Fig. 5.1. The spectrum of a bisectorial operator is contained in Σω(A). The contour
∂Σγ is parametrised counter-clockwise.

In the next result we collect some elementary properties of this functional
calculus.

Proposition 5.22. Let A be a bisectorial operator on X, and θ ∈ (ω(A), 1
2π).

(i) The mapping [ψ ∈ H∞0 (Σθ)] 7→ [ψ(A) ∈ L(X)] is an algebra homomor-
phism.

(ii) The adjoint operator A∗ is bisectorial on X∗ and ω(A∗) = ω(A). For
ψ ∈ H∞0 (Σθ) we have ψ(A∗) = ψ(A)∗.

(iii) For ψ ∈ H∞0 (Σθ) and t ∈ R \ {0} we have ψ(tA) = ψ(t·)(A).
(iv) For ψ ∈ H∞0 (Σθ) and x ∈ N(A) we have ψ(A)x = 0.
(v) If D(A) = X (in particular if X is reflexive), then R(A) = R(A(i+A)−2).

(vi) (Calderón’s reproducing formula) For all functions ψ ∈ H∞0 (Σθ) satisfy-
ing

∫∞
0
ψ(±t) dtt = 1 and ϕ ∈ H∞0 (Σθ) we have∫ ∞

0

ψ(tA)x
dt

t
= x, x ∈ R(ϕ(A)).

Proof. (i): The non-trivial part of the proof consists of showing that (ϕψ)(A) =
ϕ(A)ψ(A) for ϕ,ψ ∈ H∞0 (Σθ). This identity follows from a computation based
on the resolvent identity.

(ii): follows from ρ(A∗) = ρ(A) and R(z,A∗) = R(z,A)∗ for z ∈ ρ(A).
(iii): This is straightforward.
(iv): Since (z − A)−1x = z−1x for x ∈ N(A) and z ∈ ρ(A) \ {0}, we have

ψ(A)x = 1
2πi

( ∫
Γγ
ψ(z)dzz

)
x, which vanishes by Cauchy’s formula.

(v): We will show that R(A) ⊆ R(A(i+A)−2), the other inclusion being
trivial. Let x ∈ R(A). Then xt := it(it+A)−1x ∈ R(A)∩D(A) and xt → x as
t→∞ by Lemma 5.19. This shows that R(A) ⊆ R(A) ∩ D(A).
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Now take x ∈ R(A) ∩ D(A). For some y ∈ D(A2) we have x = Ay =
A(i+A)−2(i+A)2y, hence x ∈ R(A(i+A)−2). Combining these observations,
the result follows.

(vi): The dilation invariance of dt
t implies that

∫∞
0
ψ(tz) dtt = 1 for all

z ∈ R\{0}, and by the principle of analytic continuation this identity extends
to z ∈ Σθ. Let y ∈ X and put x := ϕ(A)y. For γ ∈ (ω(A), θ),∫ ∞

0

ψ(tA)x
dt

t
=
∫ ∞

0

(ψ(t·)ϕ(·))(A)y
dt

t

=
∫ ∞

0

∫
∂Σγ

ψ(tz)ϕ(z)(z −A)−1y dz
dt

t

=
∫
∂Σγ

(∫ ∞
0

ψ(tz)
dt

t

)
ϕ(z)(z −A)−1y dz

=
∫
∂Σγ

ϕ(z)(z −A)−1y dz

= ϕ(A)y = x.

�

For θ ∈ (0, 1
2π) consider the extended Dunford-Riesz class

E(Σθ) := H∞0 (Σθ)⊕ 〈(i+ z)−1〉 ⊕ 〈1〉.

The identity 1
(i+z)2 = iz

(i+z)2 −
i
i+z implies that E(Σθ) is an algebra.

For f ∈ E(Σθ) of the form f = ψ + α(i + z)−1 + β1 with α, β ∈ C, we
define

f(A) := ψ(A) + α(i+A)−1 + βI ∈ L(X).

The following result extends Proposition 5.22(i).

Lemma 5.23. Let A be a bisectorial operator on X. For θ ∈ (ω(A), 1
2π) the

mapping ψ 7→ ψ(A) is an algebra homomorphism from E(Σθ) into L(X).

Proof. See [78, Theorem 2.3.3]. �

A first consequence of this lemma is the following identity:

Lemma 5.24. Let A be a bisectorial operator on X. Then ( z
(i+z)2 )(A) = A(i+

A)−2.

Proof. Since z
(i+z)2 = 1

i+z −
i

(i+z)2 , Lemma 5.23 implies that

( z
(i+z)2 )(A) = ( 1

i+z )(A)− i( 1
(i+z)2 )(A)

= (i+A)−1 − i
(
( 1
i+z )(A)

)2
= (i+A)−1 − i(i+A)−2

= A(i+A)−2.

�
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Extension of the holomorphic functional calculus

In the rest of this chapter we will make the simplifying assumption that

• X is a reflexive Banach space.

We will now consider sectorial operators, but it is easily seen that the results
extend to the bisectorial case with obvious modifications. As we do not assume
that the operators are injective, we consider functions defined on the union
Σ+
θ ∪ {0} for some θ ∈ (0, π).

For θ ∈ (0, π) we consider the following spaces of functions:

• H∞(Σ+
θ ) consists of all bounded functions f : Σ+

θ ∪ {0} → C which are
holomorphic on Σ+

θ .
• F(Σ+

θ ) is the collection of all functions f : Σ+
θ ∪ {0} → C which are

holomorphic on Σ+
θ and obey an estimate

|f(z)| ≤ C(|z|α + |z|−α), z ∈ Σ+
θ , (5.4)

for some C ≥ 0 and α > 0.

Clearly, H∞(Σ+
θ ) ( F(Σ+

θ ). We will regard E(Σ+
θ ) as a subspace of H∞(Σ+

θ )
by defining

f(0) := α+ β

for functions f ∈ E(Σ+
θ ) of the form

f := ψ + α(1 + z)−1 + β1

with ψ ∈ H∞0 (Σ+
θ ), and α, β ∈ C.

For our purposes the most important functions f contained in F(Σ+
θ ) are

the fractional powers f(z) := zα for Re α > 0. A very useful function in the
bisectorial case is the function sgn ∈ H∞(Σθ) defined by

sgn(z) :=
{
±1, z ∈ Σ±θ ,

0, z = 0. (5.5)

Let A be a sectorial operator on X. So far we defined ψ(A) ∈ L(X) for
ψ ∈ E(Σ+

θ ) with θ ∈ (ω+(A), π). (Actually, we gave the definition in the
bisectorial case; the sectorial case is analogous.) Our next aim is to define
f(A) as a closed operator for f ∈ F(Σ+

θ ).
Let A0 be the part of A in R(A). In view of Proposition 5.20, A0 is an

injective sectorial operator on R(A). For f ∈ F(Σ+
θ ) we define

Reg(f) := {e ∈ H∞0 (Σ+
θ ) : e(A0) is injective, ef ∈ H∞0 (Σ+

θ )}.

If e ∈ Reg(f) we say that e is a regulariser for f.

Lemma 5.25. Let A be a sectorial operator on X and let θ ∈ (ω+(A), π). For
each f ∈ F(Σ+

θ ) we have Reg(f) 6= ∅.
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Proof. Take f ∈ F(Σ+
θ ) and α > 0 such that (5.4) holds, and pick an integer

n > α. We will show that the functions ψn(z) := zn

(1+z)2n are contained in
Reg(f). Clearly, ψnf ∈ H∞0 (Σ+

θ ). Lemma 5.24 and Lemma 5.22(i) imply that
ψn(A0) = An0 (I + A0)−2nx. To show that ψn(A0) is injective, suppose that
A0(I + A0)−2x = 0 for some x ∈ R(A). Then A0(I + A0)−1x = 0 hence
x = (I + Ã)−1x. This implies that x ∈ D(A0) and A0x = 0, hence x = 0 since
A0 is injective. The injectivity of ψn(A0) follows by induction. �

Now we are in a position to define f(A). This will be done in two steps.

1. We define f(A0) for f ∈ F(Σ+
θ ) by a regularisation procedure: Fix e ∈

Reg(f) and define

f(A0)x := e(A0)−1(ef)(A0)x, x ∈ D(f(A0)), (5.6)

where

D(f(A0)) := {x ∈ R(A) : (ef)(A)x ∈ R(e(A0))}. (5.7)

This definition does not depend on the choice of e ∈ Reg(f). Indeed, if
ẽ is another regulariser for f, we use the fact that e(A0)−1ẽ(A0)−1 =
ẽ(A0)−1e(A0)−1 to obtain

ẽ(A0)−1(ẽf)(A0) = ẽ(A0)−1e(A0)−1e(A0)(ẽf)(A0)

= e(A0)−1ẽ(A0)−1(eẽf)(A0)

= e(A0)−1ẽ(A0)−1ẽ(A0)(ef)(A0)

= e(A0)−1(ef)(A0),

which proves the claim.
2. We define f(A)x by

f(A)x := f(0)x0 + f(A0)x1, x := x0 + x1 ∈ N(A)⊕ D(f(A0)).

Proposition 5.26. Let A be a sectorial operator on X, let θ ∈ (ω+(A), π),
and let f ∈ F(Σ+

θ ). Then f(A) is a closed operator on X.

Proof. In view of Proposition 5.20 it suffices to show that f(A0) is closed on
R(A). Let e be a regulariser for f. Take xn ∈ D(f(A0)) and x, y ∈ X such that
xn → x and f(A0)xn → y. This implies that e(A0)f(A0)xn → e(A0)y. Since
f(A0)xn = e(A0)−1(ef)(A0)xn, it follows that e(A0)y = (ef)(A0)x, hence
x ∈ D(f(A0)) and f(A0)x = y. �

Lemma 5.27. Let A be a sectorial operator on X and let θ ∈ (ω+(A), π). For
f1, f2 ∈ F(Σθ) we have f1(A)f2(A) ⊆ (f1f2)(A).
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Proof. It suffices to prove the result for A0.
Let e1 and e2 be regularisers for f1 and f2 respectively. Then e1e2 is a

regulariser for f1f2. Let x ∈ D(f1(A0)f2(A0)) and set z := f2(A0)x and w :=
f1(A0)z. By definition we have (e2f2)(A0)x = e2(A0)z and (e1f1)(A0)z =
e1(A0)w, and therefore

(e1e2f1f2)(A0)x = (e1f1)(A0)(e2f2)(A0)x = (e1f1)(A0)e2(A0)z
= e2(A0)(e1f1)(A0)z = e2(A0)e1(A0)w = (e1e2)(A0)w.

This means that x ∈ D((f1f2)(A0)) and (f1f2)(A0)x = w. �

Squares, square roots, and signs

Proposition 5.28. Let A be a sectorial operator on X, let θ ∈ (ω+(A), π),
and let α ∈ (0, πθ ).

(i) Aα := (zα)(A) is sectorial with ω+(Aα) = αω+(A).
(ii) R(Aα) = R(A) and N(Aα) = N(A).

(iii) For f ∈ H∞0 (Σ+
θ ) we have ψα(A) = ψ(Aα), where ψα ∈ H∞0 (Σ+

θ/α) is
defined by ψα(z) := ψ(zα).

Proof. See [78, Propositions 3.1.1, 3.1.2 & 3.1.4] �

The bisectorial counterpart is as follows.

Proposition 5.29. Let A be a bisectorial operator on X and θ ∈ (ω(A), 1
2π).

(i) The operator A2 is sectorial with ω+(A2) = 2ω(A).
(ii) R(A2) = R(A) and N(A2) = N(A).

(iii) For f ∈ F(Σ+
2θ) we have f̂(A) = f(A2), where f̂ ∈ F(Σθ) is defined by

f̂(z) := f(z2).

Proof. (i): It is easily checked that z ∈ ρ(A) implies that z2 ∈ ρ(A2) and

(z2 −A2)−1 = −(z −A)−1(−z −A)−1. (5.8)

The resolvent bounded follows from this identity, hence A2 is sectorial.
(ii): For x ∈ R(A) Lemma 5.19 implies that

x = lim
s→0

A(is+A)−1x = lim
s→0

lim
t→0

A2(it+A)−1(is+A)−1x,

hence R(A) ⊆ R(A2). The reverse inclusion is trivial.
For the second statement it suffices to show that Ax = 0 whenever A2x =

0. For x ∈ N(A2) we have, again by Lemma 5.19,

Ax = lim
t→0

(it+A)−1A2x = 0,
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which completes the proof.
(iii): Since N(A) = N(A2) by (ii), it suffices to prove the result for A0. By a

direct computation involving (5.8) and the resolvent identity we have ψ̂(A0) =
ψ(A2

0) for any ψ ∈ H∞0 (Σ+
2θ). Note that ê is a regulariser for f̂ whenever e is

a regulariser for f. Since ê(A0) = e(A2
0) and (ef)(A0) = (êf̂)(A0), it follows

that D(f̂(A0)) = D(f(A2
0)) and f̂(A0)x = f(A2

0)x for x ∈ D(f(A2
0)). �

Applying these results to the sgn-function, we obtain the following result.

Proposition 5.30. Let A be a bisectorial operator on X. For θ ∈ (ω(A), π)
define ψ ∈ H∞0 (Σ+

2θ) by ψ(z) := z(1 + z)−2, and ψ̂ ∈ H∞0 (Σθ) by ψ̂(z) :=
ψ(z2). Then R(ψ(A)) ∈ D(

√
A2) ∩ D(sgn(A)A) and

√
A2y = sgn(A)Ay, y ∈ R(ψ̂(A)).

Proof. Take x ∈ X and set y := ψ̂(A)x. Proposition 5.29(iii) implies that
y = A2(i+A2)−2x, hence y ∈ D(A). Moreover, by Lemma 5.27,(

sgn(z)ψ̂(z)
)
(A)Ay =

(
sgn(z)ψ̂(z)

)
(A)Aψ̂(A)x

=
(

sgn(z)ψ̂(z)
)
(A)
(
zψ̂(z)

)
(A)x

=
(
z sgn(z)ψ̂2(z)

)
(A)x

= ψ̂(A)
(
z sgn(z)ψ̂(z)

)
(A)x,

hence, by (5.6) and (5.7) we find that Ay ∈ D(A sgn(A)) and sgn(A)Ay =(
z sgn(z)ψ̂(z)

)
(A)x.

On the other hand, by Proposition 5.29(iii),(√
zψ(z)

)
(A2)y =

(√
zψ(z)

)
(A2)ψ(A2)x = ψ(A2)

(√
zψ(z)

)
(A2)x,

which implies that y ∈ D(
√
A2) and

√
A2y =

(√
zψ(z)

)
(A2)x. By another

application of Proposition 5.29(iii) we infer that
√
A2y =

(√
z2ψ(z2)

)
(A)x = (z sgn(z)ψ̂(z))(A)x,

which completes the proof.
�

Square functions

Proposition 5.31. Let A be a sectorial operator on X. For θ ∈ (ω+(A), π),
ψ ∈ H∞0 (Σ+

θ ), and α ∈ (0, πθ ) we have

‖ψ(tAα)x‖γ(L2(R+,
dt
t ),X) =

√
α‖ψα(tA)x‖γ(L2(R+,

dt
t ),X), x ∈ X,

where ψα ∈ H∞0 (Σ+
θ/α) is defined by ψα(z) := ψ(zα).



120 5 Appendix: Tools from Operator Theory

Proof. By Proposition 5.28(iii) we have ψ(tAα) = ψα(t1/αA). Therefore, for
any orthonormal basis (ek)k≥1 of L2(R+,

dt
t ),

‖ψ(tAα)x‖2
γ(L2(R+,

dt
t ),X)

= ‖ψα(t1/αA)x‖2
γ(L2(R+,

dt
t ),X)

= E
∥∥∥ ∞∑
k=1

γk

∫ ∞
0

ek(t)ψα(t1/αA)x
dt

t

∥∥∥2

= E
∥∥∥ ∞∑
k=1

γk

∫ ∞
0

αek(sα)ψα(sA)x
ds

s

∥∥∥2

= α‖ψα(sA)x‖2
γ(L2(R+,

ds
s ),X)

,

where we used that (
√
αek(sα)) is an orthonormal basis of L2(R+,

ds
s ). �

The bisectorial counterpart reads as follows.

Proposition 5.32. Let A be a bisectorial operator on a Banach space X. For
ψ ∈ H∞0 (Σ+

2θ) with θ ∈ (ω(A), 1
2π), we have

‖ψ(tA2)x‖γ(L2(R+,
dt
t ),X) =

√
2‖ψ̂(tA)x‖γ(L2(R+,

dt
t ),X), x ∈ X,

where ψ̂ ∈ H∞0 (Σθ) is defined by ψ̂(z) := ψ(z2).

Proof. Proposition 5.29(iii) implies that ψ̂(A) = ψ(A2). Arguing as in Propo-
sition 5.31 we obtain

‖ψ(tA2)x‖γ(L2(R+,
dt
t ),X) = ‖ψ̂(

√
tA)x‖γ(L2(R+,

dt
t ),X)

=
√

2‖ψ̂(tA)x‖γ(L2(R+,
dt
t ),X).

�

Boundedness of the H∞-calculus

Definition 5.33. Let A be a sectorial operator on X and let θ ∈ (ω+(A), π).
We say that A has a bounded H∞(Σ+

θ )-functional calculus if there exists a
constant C ≥ 0 such that for all ψ ∈ H∞0 (Σ+

θ ) and all x ∈ X we have

‖ψ(A)x‖ ≤ C‖ψ‖H∞(Σ+
θ )‖x‖.

The infimum over all possible angles θ for which this estimate holds is denoted
by ω+

H∞(A). We say that A has a bounded H∞-functional calculus if it has a
bounded H∞(Σ+

θ )-functional calculus for some θ ∈ (ω+(A), π).

The following convergence lemma is crucial.

Lemma 5.34. (Convergence lemma) Let A be a sectorial operator, let θ ∈
(ω+(A), π), and suppose that fn, f ∈ H∞(Σ+

θ ) satisfy



5.4 Quadratic estimates and boundedness of the H∞-calculus 121

• supn≥1 ‖fn‖∞ <∞ and fn → f uniformly on compacta;
• fn(A) ∈ L(X) and supn≥1 ‖fn(A)‖L(X) <∞.

Then f(A) ∈ L(X), fn(A)x→ f(A)x for all x ∈ X, and

‖f(A)x‖ ≤ sup
n≥1
‖fn(A)‖ ‖x‖, x ∈ R(A).

Proof. See [2, Theorem D]. �

A first application of the convergence lemma is the following result:

Proposition 5.35. Let A be a sectorial operator with a bounded H∞(Σ+
θ )-

calculus for some θ ∈ (ω+(A), π). For all f ∈ H∞(Σ+
θ ) we have f(A) ∈ L(X)

and ‖f(A)‖L(X) . ‖f‖H∞(Σ+
θ ).

Proof. Set ρn(z) := z
n−1+z and fn(z) := f(z)ρn(z). Since A has a bounded

H∞(Σ+
θ )-calculus, Lemma 5.34 implies that f(A) ∈ L(X). Moreover, using

Lemma 5.34 and the boundedness of the H∞(Σ+
θ )-calculus again, we obtain

for x := x0 + x1 ∈ N(A)⊕ R(A),

‖f(A)x‖ ≤ ‖f(A)x0‖+ ‖f(A)x1‖
≤ ‖f(0)x0‖+ sup

n≥1
‖fn(A)‖ ‖x1‖

. ‖f(0)x0‖+ sup
n≥1
‖fn‖∞ ‖x1‖

. ‖f‖∞
(
‖x0‖+ ‖x1‖

)
. ‖f‖∞‖x‖.

�

5.4 Quadratic estimates and boundedness of the
H∞-calculus

In this section we will use square functions to characterise the boundedness of
the H∞-functional calculus. In order to obtain such results in Banach spaces,
it is necessary to strengthen the notion of bisectoriality and combine it with
the randomised boundedness from Section 5.1:

Definition 5.36. A bisectorial operator A is said to be γ-bisectorial if for
some θ ∈ (ω(A), 1

2π) the collection {z(z − A)−1 : z /∈ Σθ} is γ-bounded. The
infimum over such θ is denoted by ωγ(A).

The notions of γ-sectoriality and R-(bi)sectoriality are defined similarly.
The boundedness of the H∞-calculus is closely related to square function

estimates. Of fundamental importance is the following result, proved by Le
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Merdy [99, Theorem 1.1]) in Lp-spaces, and generalised to Banach spaces by
Kalton and Weis [90, Proposition 7.7]. See also [87, Proposition 4.6] for a
version with Rademacher sums.

Theorem 5.37. Let A be a γ-bisectorial operator on X, let ϕ,ψ ∈ H∞0 (Σθ),
and let f ∈ H∞(Σθ) for some θ ∈ (ωγ(A), 1

2π). Then

‖f(A)ϕ(tA)x‖γ(L2(R+,
dt
t ),X) . ‖f‖∞‖ψ(tA)x‖γ(L2(R+,

dt
t ),X).

In the proof we use the following lemma, which is a variation of [87, Lemma
4.7].

Lemma 5.38. Let ξ ∈ L1(R+,
dt
t ). The operator S defined for u ∈ L2(R+,

dt
t )

and x ∈ X by

S(u⊗ x)(s) :=
(∫ ∞

0

ξ(st)u(t)
dt

t

)
⊗ x, s > 0, (5.9)

extends uniquely to a bounded operator on γ(L2(R+,
dt
t ), X) of norm ≤

‖ξ‖L1(R+,
dt
t ).

Proof. By Lemma 5.10 it suffices to show that u 7→
∫∞
0
ξ(t·)u(t) dtt defines

a bounded operator on L2(R+,
dt
t ). Using Jensen’s inequality and Fubini’s

theorem we obtain for u ∈ L2(R+,
dt
t ),∫ ∞

0

∣∣∣ ∫ ∞
0

ξ(st)u(t)
dt

t

∣∣∣2 ds
s
≤ ‖ξ‖L1(R+,

dt
t )

∫ ∞
0

∫ ∞
0

|ξ(st)| |u(t)|2 dt
t

ds

s

= ‖ξ‖2
L1(R+,

dt
t )

∫ ∞
0

|u(t)|2 dt
t
,

which gives the desired result. �

Proof (of Theorem 5.37). In this proof we will write L2(Ωt) := L2(R+,
dt
t )

and L2(Ωz) := L2(∂Σγ , |dzz |) for brevity.
For x = x0 + x1 ∈ N(A)⊕ R(A) we have f(A)ϕ(tA)x = f(A)ϕ(tA)x1 and

ψ(tA)x = ψ(tA)x1. Therefore we may assume that x ∈ R(A).
By an approximation argument based on Lemma 5.34 we may assume

that f ∈ H∞0 (Σθ). We take γ ∈ (ωγ(A), θ) and introduce auxiliary functions
ξ, η ∈ H∞0 (Σθ) satisfying

∫∞
0
ξ(±t)η(±t)ψ(±t) dtt = 1. The dilation invariance

of dt
t implies that ∫ ∞

0

ξ(tz)η(tz)ψ(tz)
dt

t
= 1

for all z ∈ R \ {0}, and by the principle of analytic continuation this identity
extends to z ∈ Σθ. We define

u(z) :=
∫ ∞

0

ξ(tz)f(A)η(tA)ψ(tA)x
dt

t
, z ∈ Σθ,
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and claim that

f(A)ϕ(sA)x =
1

2πi

∫
∂Σγ

ϕ(sz)R(z,A)u(z) dz. (5.10)

To show this, we use Fubini’s theorem and Proposition 5.22(i) to write

f(A) =
1

2πi

∫
∂Σγ

f(z)R(z,A) dz

=
1

2πi

∫ ∞
0

∫
∂Σγ

f(z)ξ(tz)η(tz)ψ(tz)R(z,A) dz
dt

t

=
∫ ∞

0

f(A)ξ(tA)η(tA)ψ(tA)
dt

t
.

Using Fubini’s theorem once more we obtain

f(A)ϕ(sA)x =
∫ ∞

0

f(A)ξ(tA)η(tA)ψ(tA)ϕ(sA)x
dt

t

=
∫ ∞

0

(
1

2πi

∫
∂Σγ

ξ(tz)ϕ(sz)R(z,A) dz
)
f(A)η(tA)ψ(tA)x

dt

t

=
1

2πi

∫
∂Σγ

ϕ(sz)R(z,A)
(∫ ∞

0

ξ(tz)f(A)η(tA)ψ(tA)x
dt

t

)
dz

=
1

2πi

∫
∂Σγ

ϕ(sz)R(z,A)u(z) dz,

which proves the claim.
Using (5.10) and Lemma 5.38, Propostition 5.16 and the γ-bisectoriality

of A, and Lemma 5.38 once more, we obtain

‖f(A)ϕ(tA)x‖γ(L2(Ωt),X) . ‖zR(z,A)u(z)‖γ(L2(Ωz),X)

. ‖u(z)‖γ(L2(Ωz),X)

. ‖f(A)η(tA)ψ(tA)x‖γ(L2(Ωt),X).

In view of Proposition 5.16 the only thing that remains to be shown is that
{f(A)η(tA) : t > 0} is γ-bounded. To show this we write

f(A)η(tA) =
1

2πi

∫
∂Σγ

f(z)η(tz)zR(z,A)
dz

z
.

The desired γ-boundedness follows from an application of Proposition 5.3,
taking into account the estimate

sup
t>0

∫
∂Σγ

|f(z)η(tz)|
∣∣∣dz
z

∣∣∣ ≤ ‖f‖∞ ∫
∂Σγ

|η(z)|
∣∣∣dz
z

∣∣∣ <∞,
and the γ-boundedness of {zR(z,A) : z ∈ ∂Σγ}. �
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Corollary 5.39. Let A be a γ-bisectorial operator on X and take θ ∈
(ωγ(A), π). For all ϕ,ψ ∈ H∞0 (Σθ) we have equivalence of norms

‖ϕ(tA)x‖γ(L2(R+,
dt
t ),X) h ‖ψ(tA)x‖γ(L2(R+,

dt
t ),X), x ∈ X.

Proof. Just take f ≡ 1 in Theorem 5.37. �

Now we can state the second main result of this section. In Hilbert spaces
it is due to McIntosh [122], in Lp-spaces it is due to Cowling, Doust, McIntosh
and Yagi [41] and Le Merdy [100]. The general case is due to Kalton and Weis
[90] (see also [87]).

Here we do not state the result under the weakest possible assumptions
on the Banach space (for which we refer the interested reader to [87, 90]), but
the present formulation is sufficiently general for the applications in Chapter
4. The most important equivalence for our purposes is (i)⇔(v).

Theorem 5.40. Let A be a γ-sectorial operator on a Banach space X and as-
sume that X has non-trivial type. Fix θ ∈ (ω+

γ (A), π) and take ψ ∈ H∞0 (Σ+
θ ).

The following assertions are equivalent.

(i) A has a bounded H∞(Σ+
θ )-calculus.

(ii) The collection

{ n2∑
k=n1

εkψ(2ktA) : −∞ < n1 < n2 < +∞, t > 0, εk = ±1
}

is uniformly bounded in L(X).
(iii) Let (γk)k∈Z be a Gaussian sequence. For all x ∈ X and x∗ ∈ X∗ we have

E
∥∥∥ +∞∑
k=−∞

γkψ(2kA)x
∥∥∥ . ‖x‖, E

∥∥∥ +∞∑
k=−∞

γkψ(2kA∗)x∗
∥∥∥ . ‖x∗‖.

(iv) For all x ∈ X and x∗ ∈ X∗ we have

‖ψ(tA)x‖γ(L2(R+,
dt
t ),X) . ‖x‖, ‖ψ(tA∗)x∗‖γ(L2(R+,

dt
t ),X∗) . ‖x

∗‖.

(v) For x ∈ R(A) we have ‖ψ(tA)x‖γ(L2(R+,
dt
t ),X) h ‖x‖.

In the proof we will use the fact that if X is a Banach space with non-trivial
type, then both X and X∗ have finite cotype. We will also use the following
result by Hoffmann-Jørgensen and Kwapień.

Theorem 5.41. Let 1 ≤ p < ∞ and suppose that the Banach space X does
not contain a closed subspace isomorphic to c0. Let (ξn)n≥1 be a sequence of
independent symmetric X-valued random variables satisfying
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sup
n≥1

E
∥∥∥ n∑
k=1

ξk

∥∥∥ <∞.
Then there exists an X-valued random variable S such that

E‖S −
n∑
k=1

ξk‖p → 0.

Proof. See [164, Theorem V.6.1.]. �

Proof (of Theorem 5.40).
(i) ⇒ (ii): For ψ ∈ H∞0 (Σ+

θ ), εk = ±1, t > 0, and n1 < n2, we consider
the function ψε,n1,n2,t ∈ H∞(Σ+

θ ) defined by

ψε,n1,n2,t(z) :=
n2∑
k=n1

εkψ(2ktz), z ∈ Σ+
θ .

By Proposition 5.35 it suffices to show that

sup
ε,n1,n2,t

‖ψε,n1,n2,t‖H∞(Σ+
θ ) <∞.

Using that |ψ(z)| . |z|α
|1+z|2α for some α > 0, we obtain

sup
ε,n1,n2,t

sup
z∈Σ+

θ

|ψε,n1,n2,t(z)| ≤ sup
z∈Σ+

θ

∑
k∈Z
|ψ(2kz)| ≤ sup

z∈Σ+
θ

∑
k∈Z

(2k|z|)α

|1 + 2kz|2α

. sup
z∈Σ+

θ

∑
k∈Z

(2k|z|)α

(1 + 2k|z|)2α
= sup

t>0

∑
k∈Z

(2kt)α

(1 + 2kt)2α

= sup
t∈[1,2)

∑
k∈Z

(2kt)α

(1 + 2kt)2α
<∞.

(ii) ⇒ (iii): Let (rk)k≥1 be a Rademacher sequence. Since X has finite
cotype we can combine (ii) with Remark 5.2(vi) to obtain

sup
N≥1

E
∥∥∥ N∑
k=−N

γkψ(2kA)x
∥∥∥ . sup

N≥1
E
∥∥∥ N∑
k=−N

rkψ(2kA)x
∥∥∥

≤ sup
N≥1

sup
εk=±1

∥∥∥ N∑
k=−N

εkψ(2kA)x
∥∥∥ . ‖x‖.

The desired estimate follows from Theorem 5.41. The other estimate follows
in the same way, using that X∗ has finite cotype and∥∥∥ N∑

k=−N

εkψ(2kA)
∥∥∥
L(X)

=
∥∥∥ N∑
k=−N

εkψ(2kA∗)
∥∥∥
L(X∗)

.
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(iii) ⇒ (iv): By Corollary 5.39 it suffices to show the result for one partic-
ular ψ. We choose ψ(z) := z1/2

1+z . We observe that

ψ(tA) =
+∞∑

k=−∞

1[2k,2k+1)(t)
t1/2

2k/2
K(t)ψ(2kA), t > 0,

where

K(t) :=
+∞∑

k=−∞

1[2k,2k+1)(t)
[
I +

2k − t
t

tA(I + tA)−1
]
, t > 0.

Since {tA(I + tA)−1 : t > 0} is γ-bounded and
∣∣ 2k−t

t

∣∣ ≤ 1 for t ∈ [2k, 2k+1),
it follows from 5.2(iii) that the collection {K(t) : t > 0} is γ-bounded as
well. Combining this fact with Proposition 5.16, and using the fact that the
functions t 7→ 1[2k,2k+1)(t) t

1/2

2k/2
form an orthonormal system in L2(R+,

dt
t ) we

obtain, for all x ∈ X,

‖ψ(tA)x‖γ(L2(R+,
dt
t ),X)

=
∥∥∥ +∞∑
k=−∞

1[2k,2k+1)(t)
t1/2

2k/2
K(t)ψ(2kA)x

∥∥∥
γ(L2(R+,

dt
t ),X)

.
∥∥∥ +∞∑
k=−∞

1[2k,2k+1)(t)
t1/2

2k/2
ψ(2kA)x

∥∥∥
γ(L2(R+,

dt
t ),X)

=
(
E
∥∥∥ +∞∑
k=−∞

γkψ(2kA)x
∥∥∥2)1/2

. ‖x‖.

The other estimate is proved in the same way, taking into account that the
γ-boundedness of adjoint operators is guaranteed by the fact that X has
nontrivial type and Proposition 5.4.

(iv) ⇒ (v): Take x ∈ R(A(I + A)−2) and ψ ∈ H∞0 (Σ+
θ ) satisfying∫∞

0
ψ2(t) dtt = 1. By Calderón’s reproducing formula from Proposition 5.22(vi)

we have
∫∞
0
ψ2(tA)x dt

t = x, hence 〈x, x∗〉 =
∫∞
0
〈ψ(tA)x, ψ(tA∗)x∗〉 dtt for

x∗ ∈ X∗. Using Proposition 5.17 we obtain

〈x, x∗〉 ≤ ‖ψ(tA)x‖γ(L2(R+,
dt
t ),X)‖ψ(tA∗)x∗‖γ(L2(R+,

dt
t ),X∗)

. ‖ψ(tA)x‖γ(L2(R+,
dt
t ),X)‖x

∗‖.

Taking the supremum over x∗ in the unit ball of X∗, we obtain the desired
estimate ‖x‖ . ‖ψ(tA)x‖γ(L2(R+,

dt
t ),X), which extends to x ∈ R(A) by Propo-

sition 5.22(v).
(v)⇒ (i): Using Theorem 5.37 we obtain, for x ∈ R(A) and f ∈ H∞0 (Σ+

θ ),
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‖f(A)x‖ h ‖f(A)ψ(tA)x‖γ(L2(R+,
dt
t ),X)

. ‖f‖∞‖ψ(tA)x‖γ(L2(R+,
dt
t ),X) h ‖f‖∞‖x‖.

�

The previous theorem gave a characterisation of the boundedness of the
functional calculus under a randomised boundedness condition on the resol-
vent. The next result from Kalton and Weis [89, Theorem 5.3] shows that in
“reasonable” Banach spaces, this condition is always satisfied if the operator
under consideration has a bounded H∞-calculus.

Let (rk)k≥1 and (rk)k≥1 be independent Rademacher sequences. We say
that X has property (∆) if there exists a constant C > 0 depending only on
X such that for any xjk ∈ X,

(
E
∥∥∥ n∑
j=1

j∑
k=1

rjrkxjk

∥∥∥2)1/2

≤ C
(
E
∥∥∥ n∑
j=1

n∑
k=1

rjrkxjk

∥∥∥2)1/2

.

The infimum over all possible C ≥ 0 will be denoted by δ(X). All UMD spaces
(in particular Hilbert spaces and Lp-spaces) have property (∆).

Theorem 5.42. Let X be a Banach space with non-trivial type and property
(∆). If A is a sectorial operator having a bounded H∞(Σ+

θ )-calculus for some
θ ∈ (ω+(A), π), then A is γ-sectorial with ω+

γ (A) = ω+
H∞(A).

The proof uses the following lemma.

Lemma 5.43. Let 0 < ν < θ, and let f : Σ+
θ → L(X) be a bounded holomor-

phic function. Suppose that

sup
t>0
R({f(akte±iν) : k ∈ Z}) <∞

for some a > 1. Then the collection {f(z) : z ∈ Σ+
ω } is R-bounded for each

0 < ω < ν.

Proof. See [170, Lemma 3.8]. �

Proof (of Theorem 5.42). Since X is assumed to have finite cotype we may
switch between Rademacher and Gaussian sums by virtue of Remark 5.2(vi).
We proceed in several steps.

Step 1. For i = 1, 2, let (Uk)k≥1, (Vk)k≥1 ⊆ L(X) satisfy

sup
n≥1

sup
εk=±1

∥∥∥ n∑
k=1

εkUk

∥∥∥ ≤M, sup
n≥1

sup
εk=±1

∥∥∥ n∑
k=1

εkVk

∥∥∥ ≤M,

for some M ≥ 0. We claim that the collection C := {
∑n
k=1 UkVk : n ≥ 1} is

R-bounded with R(C) < δ(X)M2.
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Let (rk)k≥1 and (rk)k≥1 be independent Rademacher sequences. For yk ∈
X we have ∥∥∥ n∑

k=1

Ukyk

∥∥∥ =
∥∥∥E n∑

j=1

rjUj

( n∑
k=1

rkyk

)∥∥∥
≤ E

∥∥∥ n∑
k=1

rkUk

∥∥∥∥∥∥ n∑
k=1

rkyk

∥∥∥
≤M

(
E
∥∥∥ n∑
k=1

rkyk

∥∥∥2)1/2

.

Now we take xk ∈ X and apply this estimate to yk = Vk
∑n
j=k rjxj to obtain

E
(∥∥∥ n∑

j=1

j∑
k=1

rjUkVkxj

∥∥∥2)1/2

≤M
(
E
∥∥∥ n∑
j=1

j∑
k=1

rjrkVkxj

∥∥∥2)1/2

≤ δ(X)M
(
E
∥∥∥ n∑
j=1

n∑
k=1

rjrkVkxj

∥∥∥2)1/2

≤ δ(X)M2
(
E
∥∥∥ n∑
j=1

rjxj

∥∥∥2)1/2

.

Since the operators in the definition of R-boundedness may be chosen to be
mutually distinct [36, Lemma 3.3], it follows that C is R-bounded.

Step 2. Fix ν ∈ (θ, π). We will prove that

sup
t>0
R({2nt(2nteiν −A)−1 : n ∈ Z}) <∞.

Consider the function ϕ ∈ H∞0 (Σ+
θ ) defined by ϕ(z) := z(z − eiν)−1(2z −

eiν)−1 and set ψ(z) :=
√
ϕ(z). By the implication (i)⇒(ii) in Theorem 5.40

(for which the γ-sectoriality assumption is not needed!) we have

sup
n1,n2,t,ε

∥∥∥ n2∑
k=n1

εkψ(2ktA)
∥∥∥
L(X)

<∞.

Therefore, Step 1 applied with Uk = Vk = ψ(2ktA) implies that

sup
t>0
R
({ n2∑

k=n1

ϕ(2−kt−1A) : n1 < n2

})
<∞.

Using the resolvent identity we obtain
n2∑
k=n1

ϕ(2−kt−1A) =
n2∑
k=n1

Ae−iν
(
(2k−1teiν −A)−1 − (2kteiν −A)−1

)
= 2n1−1t(2n1−1teiν −A)−1 − 2n2t(2n2teiν −A)−1.
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Lemma 5.19 implies that 2n2t(2n2teiν − A)−1 converges strongly to PR(A)
as

n2 →∞. Therefore Remark 5.2(vii) implies that

sup
t>0
R
({

2nt(2nteiν −A)−1 : n ∈ Z
})

<∞.

Step 3. We claim that A is γ-sectorial with ω+
γ (A) ≤ ω+

H∞(A).
This follows immediately by combining Step 2 with Lemma 5.43.
Step 4. It remains to show that ω+

γ (A) ≥ ω+
H∞(A).

Suppose that A has a bounded H∞(Σ+
θ )-calculus for some θ ∈ (ω+

γ (A), π)
and take ψ ∈ H∞0 (Σ+

θ ). The implication (i) ⇒ (v) in Theorem 5.40 implies
that ‖ψ(tA)x‖γ(L2(R+,

dt
t ),X) h ‖x‖ for x ∈ R(A). Obviously, the restriction

of ψ belongs to H∞0 (Σ+
θ′) for any θ′ ∈ (ω+

γ (A), θ]. Applying the opposite
implication (v)⇒ (i), we find that A has a H∞(Σ+

θ′)-calculus, hence ω+
γ (A) ≥

ω+
H∞(A). �

5.5 Analytic semigroups

Let A be a sectorial operator on X with ω+(A) ∈ [0, 1
2π). For λ ∈ Σ+

1
2π−ω+(A)

the functions eλ(z) := e−λz are contained in E(Σ+
θ ) whenever

θ ∈ (ω+(A),
1
2
π − | arg λ|).

This allows us to define

e−λA := eλ(A), λ ∈ Σ+
1
2π−ω+(A)

.

These operators form a bounded analytic C0-semigroup in the sense of the
following definition. For details we refer to [78, Section 3.4].

Definition 5.44. A collection of operators (T (z))z∈Σθ∪{0} ⊆ L(X) with θ ∈
(0, 1

2π] is called a bounded analytic C0-semigroup (of angle θ) if the following
conditions hold:

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σθ;
(ii) The map z 7→ T (z) is analytic in Σθ and strongly continuous in Σθ′∪{0}

for each 0 < θ′ < θ;
(iii) sup{‖T (z)‖ : z ∈ Σθ′} is bounded for all 0 < θ′ < θ.

If the suprema in (iii) are at most 1, then we say that T is an analytic con-
traction semigroup (of angle θ).

Remark 5.45. There exists C0-semigroups T (t)t≥0 which are contractive on
[0,∞) and which can be analytically extend to a sector, without being contrac-
tive on any sector of positive angle [64]. We emphasise that in the definition
above T (z) is required to be bounded (resp. contractive) on a sector.



130 5 Appendix: Tools from Operator Theory

The following characterisation of γ-sectoriality in terms of the semigroup
will be useful.

Lemma 5.46. Let A be a sectorial operator on X with ω+(A) < 1
2π and

let S be the bounded analytic C0-semigroup generated by −A. The following
assertions are equivalent:

(1) The operator A is γ-sectorial of angle θ for some θ ∈ (ω+(A), 1
2π);

(2) The family {S(z) : z ∈ Σ+
ν } is γ-bounded for some ν ∈ (0, 1

2π).

If these equivalent conditions hold, then

sup{ν ∈ (0, 1
2π) : (2) holds} =

1
2
π − ω+

γ (A).

Proof. See [94, Theorem 2.20]. �

Randomised admissibility

The next proposition has been proved under slightly less general assumptions
by Haak and Kunstmann in [76] (see also the PhD-thesis [77]). It generalises
the Lp-result from Le Merdy [100, Theorem 3.5, Remark 3.6]. The first condi-
tion is a randomised analogue of the notion of admissibility in mathematical
systems theory.

Theorem 5.47. Suppose that the Banach space Y has property (α). Let A
be γ-sectorial on X of angle ω+

γ (A) < 1
2π, and let S be the bounded analytic

C0-semigroup on X generated by −A. Let U : D(A) → Y be a linear opera-
tor, bounded with respect to the graph norm of D(A). Consider the following
statements.

(1) ‖
√
tUS(t)x‖γ(L2(R+,

dt
t ),Y ) . ‖x‖, x ∈ Dp(A);

(2) The family {
√
tUS(t) : t > 0} is γ-bounded in L(X,Y ).

Then (1) implies (2). If A satisfies the “square function estimate”

‖tAS(t)x‖γ(L2(R+,
dt
t ),X) . ‖x‖,

then (2) implies (1).

Proof. See [76, Theorem 4.2]. �

Remark 5.48. In [100] and other works in the mathematical systems theory
literature, condition (2) is replaced by the following equivalent condition:

(2′) The family {tU(I + t2L)−1 : t > 0} is γ-bounded.

That (2) implies (2′) follows by taking Laplace transforms and the opposite
direction is observed in [100, (3.12)]. Since the computations in Chapter 4
involve semigroups rather then resolvents we prefer to use (2).
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Analytic contraction semigroups on Hilbert spaces

We will show that generators of C0-semigroups of contractions on Hilbert
spaces have a bounded functional calculus on some sector Σ+

θ for some θ < π.
This is a consequence of the following well-known Sz.-Nagy dilation theorem.

Theorem 5.49. Let (T (t))t≥0 be a C0-contraction semigroup on a Hilbert
space H. Then there exists a Hilbert space K, an isometric embedding J :
H ↪→ K and a unitary C0-group (U(t))t∈R on K such that

T (t) = J∗U(t)J, t ≥ 0.

Proof. See [48, Chapter 6, Section 4]. �

Theorem 5.50. Let −A be the generator of a C0-contraction semigroup on
a Hilbert space H. Then A has a bounded H∞(Σ+

θ )-calculus for all θ ∈
(ω+(A), π).

Proof. By Theorem 5.42 it suffices to prove the result for some θ ∈ ( 1
2π, π).

Let (T (t))t≥0 be the semigroup generated by −A, and take K, J and
(U(t))t∈R as in Theorem 5.49. By Stone’s theorem (see, e.g., [57, Theorem
3.24]) the generator of U can be written as −iB for some selfadjoint operator
B on K. We claim that J∗R(z, iB)J = R(z,A) for all Re z < 0. Indeed,
taking Laplace transforms we obtain for h ∈ H,

J∗R(z, iB)Jh =
∫ ∞

0

etzJ∗U(t)Jh dt =
∫ ∞

0

etzT (t)h dt = R(z,A)h.

It follows that J∗ψ(iB)J = ψ(A) for all ψ ∈ H∞0 (Σ+
θ ). Using the functional

calculus for selfadjoint operators we obtain, for h ∈ H,

‖ψ(A)h‖H = ‖J∗ψ(iB)Jh‖H
≤ ‖ψ(iB)Jh‖K ≤ ‖ψ‖∞‖Jh‖K = ‖ψ‖∞‖h‖H .

�

A representation formula for generators of analytic contraction
semigroups

Let us now turn to the situation where −A be the generator of an analytic
contraction C0-semigroup on a complex Hilbert space H. (In case that H is
real we complexify all objects.) It is well known [141, Theorem 1.57, Theorem
1.58] and the remarks following these results that A is associated with a
sesquilinear form

a : D(a)× D(a) ⊆ H ×H → C,
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which is
– densely defined, i.e., D(a) = H;
– closed, i.e., D(a) endowed with the norm

√
‖h‖2H + a(h, h) is complete;

– sectorial, i.e., there exists a constant C ≥ 0 such that

|Im a(h, h)| ≤ CRe a(h, h), h ∈ D(a).

We will give a representation formula for A which shows that it is always
possible to work in the Hodge-Dirac framework of Chapter 3. The result is
well-known, but we could not find an explicit reference.

Theorem 5.51. There exists a Hilbert space H, a closed operator V : D(V ) ⊆
H → H with dense domain D(V ) = D(a) and dense range, and a bounded
coercive operator B ∈ L(H) such that

A = V ∗BV.

Equivalently, we have a(g, h) = [BV g, V h] for all g, h ∈ D(V ).

Proof. Writing a(h) := a(h, h) by [141, Proposition 1.8] we have

|a(g, h)| . (Re a(g))1/2(Re a(h))1/2, g, h ∈ D(a).

We claim that N := {h ∈ D(a) : Re a(h) = 0} is a closed subspace of
D(a). Indeed, if hn → h in D(a) and Re a(hn) = 0, then

|Re a(h)| ≤ |a(h)− a(hn)| ≤ (Re a(h))1/2(Re a(h− hn))1/2

+ (Re a(h− hn))1/2(Re a(hn))1/2,

which becomes arbitrary small as n→∞.
On the quotient D(a)/N we define a sesquilinear form[

[g], [h]
]

:=
1
2

(a(g, h) + a(h, g)), g, h ∈ D(a).

This form is well defined, since for n, n′ ∈ N we have

|a(g + n, h+ n′)− a(g, h)| ≤ (Re a(n))1/2(Re a(h))1/2

+ (Re a(g))1/2(Re a(n′))1/2

+ (Re a(n))1/2(Re a(n′))1/2

= 0.

Since Re a(h) = 0 implies [h] = [0], the form [·, ·] is an inner product on
D(a)/N. We put

H := D(a)/N,

where the completion is taken with respect to the norm induced by [·, ·].
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Let V be the canonical mapping h 7→ [h] from D(a) onto D(a)/N. We
interpret V as a linear operator from H into H with dense domain D(V ) =
D(a) and dense range. To show that V is closed, we take a sequence (hn)n≥1

in D(a) such that hn → h in H and V hn → u in H. Since Re a(hn − hm) =
‖V (hn − hm)‖2 → 0 as m,n → ∞, the sequence (hn)n≥1 is Cauchy in D(a).
The closedness of a implies that (hn)n≥1 has a limit in D(a), which is h since
hn → h in H. Consequently, ‖V hn − V h‖2 = Re a(hn − h)→ 0. We conclude
that V is closed.

Now we define a sesquilinear form b on R(V ) by

b(V g, V h) := a(g, h).

This is well defined, since V g = V g̃ and V h = V h̃ imply that

|a(g, h)− a(g̃, h̃)| ≤ |a(g − g̃, h)|+ |a(g̃, h− h̃))|

≤ (Re a(g − g̃) Re a(h))1/2 + (Re a(g̃) Re a(h− h̃))1/2

= ‖V (g − g̃)‖ ‖V h‖+ ‖V g̃‖ ‖V (h− h̃)‖ = 0.

Moreover, the associated operator B extends to a bounded operator on H,
since

|b(V g, V h)| = |a(g, h)| . (Re a(g))1/2(Re a(h))1/2 = ‖V g‖ ‖V h‖.

We conclude that a(g, h) = [BV g, V h]. By the identity

‖V h‖2 = Re a(h) = Re [BV h, V h]

and the boundedness of B we infer that ‖u‖2 = Re [Bu, u] for all u ∈ H, and
the coercivity of B follows. �

Although the triple (H,V,B) is not unique, the next result implies that
the statements in Theorem 4.37 do not depend on the choice of (H,V,B).

Proposition 5.52. Let −A be the generator of an analytic C0-contraction
semigroup on H. Let (H,V,B) and (H̃, Ṽ , B̃) be triples with the properties as
stated in Theorem 5.51. Then:

(i) The coercivity constants κ and κ̃ of B and B̃ coincide;
(ii) D(V ) = D(Ṽ ) with ‖V h‖ h ‖Ṽ h‖.

If in addition to the above assumptions (E,H, µ) is an abstract Wiener space,
then for 1 ≤ p <∞ we have

(iii) Dp(DV ) = Dp(DṼ ) with ‖DV f‖p h ‖DṼ f‖p.

Proof. (i): This follows from the identity [BV h, V h] = a(h, h) = [B̃Ṽ h, Ṽ h]
for h ∈ D(a) and the fact that V and Ṽ have dense range.

(ii): For h ∈ D(A) we have
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κ‖V h‖2 ≤ Re [BV h, V h] = Re [Ah, h] = Re [B̃Ṽ h, Ṽ h] ≤ ‖B̃‖ ‖Ṽ h‖2.

Since D(A) is a core for both D(V ) and D(Ṽ ) the result follows.
(iii): Let D denote the Malliavin derivative. For f ∈ FC1

b(E; D(V )) we
have, by (ii),

‖DV f‖pp =
∫
E

‖V Df‖p dµ h
∫
E

‖Ṽ Df‖p dµ = ‖DṼ f‖
p
p.

The claim follows from this since FC1
b(E; D(V )) is a core for Dp(DV ) and

Dp(DṼ ). �

Analytic contraction semigroups on Lp-spaces

In this section we collect some of the good properties that analytic contraction
semigroups on Lp-spaces enjoy.

We start with a result by Kalton and Weis which generalises results by
Duong [56] and Hieber and Prüss [79].

Theorem 5.53. Let 1 < p < ∞ and let (M,µ) be a σ-finite measure space.
Let −A be the generator of a C0-semigroup (T (t))t≥0 of positive contractions
on Lp(µ), and assume that T extends to a bounded analytic semigroup on
a sector Σ+

θ for some θ ∈ (0, 1
2π). Then A has a bounded H∞-calculus and

ω+
H∞(A) = ω+

γ (A) < 1
2π.

Proof. See [89, Corollary 5.2]. �

In the proofs of Theorem 4.18 (for p > 2) and Theorem 4.19 (for 1 ≤ 2)
we use the fact that the maximal function associated with the semigroup P is
Lp-bounded. This follows from the following simple extension of a well-known
result of Cowling [40, Theorem 7] (see also [160]). For the convenience of the
reader we include a sketch of the proof.

Proposition 5.54. Let (M,µ) be a σ-finite measure space and let (T (t))t≥0

be a bounded analytic C0-semigroup on L2(µ) satisfying

(i) ‖T (t)f‖p ≤ ‖f‖p for all f ∈ L2(µ) ∩ Lp, 1 ≤ p ≤ ∞, and t ≥ 0,
(ii) T (t)f ≥ 0 for all f ≥ 0 and t ≥ 0.

For f ∈ Lp(µ) consider the maximal function

T?f := sup
t>0
|T (t)f |.

Then, for 1 < p <∞ we have

‖T?f‖p . ‖f‖p, f ∈ Lp.
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Proof. Using Lemma 1.27 it follows that T extends to a bounded analytic
semigroup on Lp(µ). Let −L denote the generator of T on Lp(µ) and note
that L has a bounded H∞-calculus of angle ω < 1

2π by Theorem 5.53. The
key idea of the proof is to write

T (t)f =
1
t

∫ t

0

T (s)f ds+
(
T (t)f − 1

t

∫ t

0

T (s)f ds
)

=
1
t

∫ t

0

T (s)f ds+m(tL)f,

where m(z) := e−z −
∫ 1

0
e−sz ds. By the Hopf-Dunford-Schwartz ergodic the-

orem [92, Theorem 6.12] we have∥∥∥ sup
t>0

∣∣∣1
t

∫ t

0

T (s)f ds
∣∣∣ ∥∥∥
p
. ‖f‖p,

so that it remains to prove that
∥∥ supt>0 |m(tL)f |

∥∥
p
. ‖f‖p.

Let n := m ◦ exp and let n̂ be its Fourier transform. Using the identities

m(z) =
1

2π

∫
R
n̂(u)ziu du, n̂(u) = (1− (1 + iu)−1)Γ (iu),

and the estimate |n̂(u)| ≤ Ce− 1
2π|u| (see [40]) we obtain

sup
t>0
|m(tL)f | ≤ sup

t>0

1
2π

∫
R
|n̂(u)| |(tL)iuf | du . 1

2π

∫
R
e−

1
2π|u||Liuf | du.

From the H∞-calculus of L we infer that ‖Liuf‖p . eω|u|‖f‖p. Taking Lp-
norms we obtain∥∥ sup

t>0
|m(tL)f |

∥∥
p
.

1
2π

∫
R
e−

1
2π|u|‖Liuf‖p du

.
1

2π

∫
R
e(ω−

1
2π)|u|‖f‖p du . ‖f‖p.

�

5.6 Notes

The notion of R-boundedness was implicit in the work of Bourgain in the
eighties [17] and has been studied systematically by Berkson and Gillespie
[13], and Clément, de Pagter, Sukochev, and Witvliet [36]. It plays a crucial
role in Weis’s operator valued Mihlin multiplier theorem, which provided a
solution to the long-standing problem of maximal Lp-regularity [169, 170] (see
[88] for a complementary result). A nice account of these developments can
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be found in the lecture notes by Denk, Hieber and Prüss [51] and Kunstmann
and Weis [94].

γ-Radonifying operators originate in the work of Gross on abstract Wiener
spaces [72]. Kalton and Weis [90] used them to extend Lp-results in harmonic
analysis involving square functions to more general Banach spaces. In the
theory of vector-valued stochastic integration γ-radonifying operators have
been used in [19, 134, 135].

The theory of H∞-functional calculus has been introduced by McIntosh
[122] and further developed by McIntosh and Yagi [123] in a Hilbert space set-
ting. Later the main results have been extended to the Lp-setting by Cowling,
Doust, McIntosh, and Yagi [41] with important contributions by Le Merdy
[100]. The extension to general Banach spaces presented here is due to Kalton
and Weis [90, 89].

An alternative proof of Theorem 5.50 due to Franks can be found in the
lecture notes [2].
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Wasserstein Spaces

In this preliminary chapter we study a class of Wasserstein metrics for prob-
ability measures on Banach spaces, induced by Hilbertian subspaces. This
setup turns out to be appropriate for applications to certain Fokker-Planck
equations associated with stochastic equations, which will be considered in
Chapter 10.

6.1 Probability measures on metric spaces

In this section we collect some background results on probability measures on
metric spaces.

• Let X,Y be a separable metric spaces.

We denote by P(X) the collection of Borel probability measures on X. The
weak topology on P(X) is the topology generated by the base consisting of
all sets of the form

B(µ; δ, f1, . . . , fn) :=
{
ν ∈P(X) : max

1≤k≤n

∣∣∣∣ ∫
X

fk dν −
∫
X

fk dµ

∣∣∣∣ < δ

}
,

for µ ∈P(X), δ > 0, n ≥ 1, and f1, . . . , fn ∈ Cb(X). It turns out that P(X)
endowed with the weak topology is a separable and metrisable space (see [158,
Theorem 3.1.5]), which is complete whenever X is complete.

The following theorem provides a characterisation of weak compactness.
A subset M ⊆ P(X) is called tight if for each ε > 0 there exists a compact
set K ⊆ X such that µ(K) > 1− ε for every µ ∈M.

Theorem 6.1 (Prokhorov). Suppose that X is complete. A subset M ⊆
P(X) is relatively weakly compact if and only if M is tight.

Proof. See [158, Theorem 3.1.9]. �
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Clearly, a sequence (µn)n≥1 ⊆ P(X) converges weakly to µ ∈ P(X) if
and only if ∫

X

f dµn →
∫
X

f dµ, f ∈ Cb(X),

in which case we use the notation µn ⇀ µ. The following characterisation will
be useful.

Lemma 6.2. A sequence (µn)n≥1 ⊆P(X) converges weakly to µ ∈P(X) if
and only if ∫

X

f dµ ≤ lim
n→∞

∫
X

f dµn

for every lower semicontinuous (lsc) function f : X → R ∪ {∞} which is
bounded from below.

Proof. See [158, Theorem 3.1.5]. �

We introduce some notation which will be used throughout this chapter.
Let X1, . . . , Xn be separable metric spaces, and let B(X) be the Borel σ-
algebra. We consider the canonical mappings defined for i = 1, . . . , n by

πi : X1 × · · · ×Xn → Xi, (x1, . . . , xn) 7→ xi.

Similarly, for i, j = 1, . . . , n we define

πi,j : X1 × · · · ×Xn → Xi ×Xj , (x1, . . . , xn) 7→ (xi, xj).

It will also be useful to interpolate these maps, for instance, for t ∈ R we set

πi,j→kt : Xn → X2, (x1, . . . , xn) 7→ (xi, (1− t)xj + txk).

For µ ∈ P(X) and a Borel mapping T : X → Y we let T#µ ∈ P(Y )
denote the push-forward measure defined by

T#µ(A) := µ(T−1(A)), A ∈ B(Y ).

For µ ∈P(X) and ν ∈P(Y ) we let Γ (µ, ν) denote the set of all transport
plans, i.e., all Σ ∈P(X × Y ) satisfying π1

#Σ = µ and π2
#Σ = ν. We remark

that Γ (µ, ν) is non-empty, since it contains the product measure µ⊗ν. Similar
notation will be used for 3-fold product spaces.

The following result will be used frequently.

Theorem 6.3 (Disintegration). Suppose that X,Y are complete. Take ν ∈
P(Y ), let π : Y → X be a Borel map, and set µ := π#ν ∈P(X). There exists
a µ-a.e. uniquely determined family of probability measures (νx)x∈X ⊆P(Y )
such that
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(i) νx(Y \ π−1({x})) = 0 for µ-a.e. x ∈ X;
(ii) x 7→ νx(B) : X → R is Borel measurable for every B ∈ B(Y );

(iii) For every Borel map f : Y → [0,∞] we have∫
Y

f(y) dν(y) =
∫
X

(∫
π−1({x})

f(y) dνx(y)
)
dµ(x).

Proof. See [55, Section 10.2]. �

In the situation described in the theorem we will write

ν =
∫
X

νx dµ(x).

A useful consequence of this result is the so-called gluing lemma.

Corollary 6.4 (Gluing Lemma). Suppose that X1, X2, X3 are complete.
Let Σ12 ∈P(X1×X2) and Σ13 ∈P(X1×X3) be such that π1

#Σ12 = π1
#Σ13.

Then there exists a probability measure Ξ ∈ Γ (X1 ×X2 ×X3) satisfying

π1,2
# Ξ = Σ12, π1,3

# Ξ = Σ13.

Proof. See [165, Lemma 7.6]. �

6.2 The setup

In this section we introduce the setup in which we will work throughout this
chapter:

• E is a real separable Banach space,
• H is a real separable Hilbert space,
• i : H ↪→ E is a continuous embedding.

We will write

Q := ii∗ ∈ L(E∗, E).

Frequently we omit the embedding i and identify H with its image under i.
For instance, we set

|x|H :=
{
|h|H , x = ih, h ∈ H,
∞, x ∈ E \ iH.

A special case of this framework is the Wiener space setting, which has
been studied in [59]. This setting is obtained when the operator Q is the
covariance operator of a Gaussian measure on E. Here we do not make this
assumption.
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Lemma 6.5. The mapping x 7→ |x|H is lower semicontinuous on E.

Proof. Let (xn)n≥1 ⊆ E be a sequence satisfying |xn−x|E → 0 and |xn|H → α
for some α ≥ 0. We have to show that |x|H ≤ α. Without loss of generality
we may assume that |xn|H < ∞ for every n ≥ 1, hence xn = ihn for some
hn ∈ H. Since H is reflexive there exists a subsequence, again denoted by
(hn)n≥1, converging weakly to some h ∈ H. For every x∗ ∈ E∗ we have

〈x, x∗〉 = lim
n→∞

〈xn, x∗〉 = lim
n→∞

[hn, i∗x∗]H = [h, i∗x∗]H = 〈ih, x∗〉,

which implies that x = ih. Since

|h|2H = lim
n→∞

[hn, h]H ≤ lim
n→∞

|hn|H |h|H = α|h|H ,

we infer that |x|H = |h|H ≤ α. �

For 1 ≤ p < ∞ and µ, ν ∈ P(E) we consider the p-Wasserstein distance
defined by

Wp,H(µ, ν) := inf
{(∫

E×E
|x− y|pH dΣ(x, y)

)1/p

: Σ ∈ Γ (µ, ν)
}
∈ [0,∞].

(6.1)

The collection of all Σ ∈ Γ (µ, ν) for which the infimum in (6.1) is attained
will be denoted by Γo(µ, ν). Elements of Γo(µ, ν) are called optimal transport
plans. Clearly, Γo(µ, ν) depends on p, but we will suppress this dependence
in the notation, since it will always be clear from the context which value of
p is under consideration. The next proposition shows that Γo(µ, ν) is always
non-empty.

Proposition 6.6. Let 1 ≤ p <∞. For all µ, ν ∈P(E) we have Γo(µ, ν) 6= ∅.

Proof. If Wp,H(µ, ν) =∞, then trivially µ⊗ ν ∈ Γo(µ, ν).
If Wp,H(µ, ν) <∞, it follows from Lemma 6.5 combined with Lemma 6.2

that the function

Φ : Γ (µ, ν)→ [0,∞], Σ 7→
∫
E×E

|x− y|pH dΣ

is lsc with respect to weak convergence in P(E ×E). Since Γ (µ, ν) is weakly
closed and tight, hence weakly compact, Φ attains its minimum on Γ (µ, ν). �

The following result is a special case of the Kantorovich duality theorem.

Theorem 6.7. Let 1 ≤ p <∞. For µ, ν ∈P(E) we have the duality

W p
p,H(µ, ν) = sup

(∫
E

φ(y) dν(y)−
∫
E

ψ(x) dµ(x)
)
,



6.2 The setup 143

where the supremum ranges over all pairs (ψ, φ) ∈ L1(µ)× L1(ν) satisfying

φ(y)− ψ(x) ≤ |x− y|pH

for all x, y ∈ E. The result remains true if we replace to L1(µ) × L1(ν) by
Cb(E)× Cb(E).

Proof. See [166, Theorem 5.10]. �

For µ ∈P(E) we set

Pp,H,µ(E) := {ν ∈P(E) : Wp,H(µ, ν) <∞}.

If p = 2 we simplify the notation and write

WH := W2,H , PH,µ(E) := P2,H,µ(E).

If H = E is finite dimensional, WH defines a (finite) metric on the set
of Borel probability measures with finite second moment. In the infinite di-
mensional setting, as has been pointed out in [59], only considering measures
satisfying

∫
E
|x|2H dµ(x) <∞ would be severely restrictive. Therefore we will

work on the full space P(E) and have to live with the fact that WH “often”
attains the value infinity.

In the following proposition we show that (P(E),Wp,H) is a complete
pseudo-metric space (in the sense that the distance may attain the value ∞)
for 1 ≤ p <∞.

Proposition 6.8. Let 1 ≤ p <∞. The following assertions hold.

(i) If µ, ν ∈P(E) satisfy Wp,H(µ, ν) = 0, then µ = ν.
(ii) WH(µ1, µ3) ≤WH(µ1, µ2) +WH(µ2, µ3) for all µj ∈P(E), j = 1, 2, 3.

(iii) The space (P(E),Wp,H) is complete.

Proof. (i): Take Σ ∈ Γo(µ, ν). Since
∫
E×E |x − y|p dΣ(x, y) = 0, we have

Σ({(x, x) : x ∈ A}) = 1, hence µ(A) = Σ({(x, x) : x ∈ E}) = ν(A) for any
A ∈ B(E).

(ii): To avoid trivialities we assume that the right-hand side is finite. By
the gluing lemma (Corollary 6.4) there exists Σ ∈ Γ (µ1, µ2, µ3) such that
π1,2

# Σ ∈ Γo(µ1, µ2) and π2,3
# Σ ∈ Γo(µ2, µ3). Therefore

WH(µ1, µ3) ≤ ‖π1 − π3‖Lp(Σ;H)

≤ ‖π1 − π2‖Lp(Σ;H) + ‖π2 − π3‖Lp(Σ;H)

= WH(µ1, µ2) +WH(µ2, µ3).

(iii): We follow [4, Proposition 7.1.5] and suppose that (µn)n≥1 is a Cauchy
sequence with respect to Wp,H . We may assume that
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∞∑
n=1

Wp,H(µn, µn+1) <∞.

By the countable version of the gluing lemma [4, Lemma 5.3.4] there exists
Σ ∈P(EN) satisfying πn,n+1

# Σ ∈ Γo(µn, µn+1) for any n ≥ 1. Therefore

∞∑
n=1

‖πn − πn+1‖Lp(Σ;H) =
∞∑
n=1

Wp,H(µn, µn+1) <∞,

from which we infer that (πn)n≥1 is a Cauchy sequence in Lp(Σ;H) converging
to a limit π∞. Writing µ∞ := π∞#Σ we obtain

Wp,H(µn, µ∞) ≤ ‖πn − π∞‖Lp(Σ;H),

which converges to 0. �

6.3 Topological properties

In the next result we let Wp,E denote the Wasserstein distance defined by
replacing the norm of H by that of E in (6.1).

Lemma 6.9. Let 1 ≤ p < ∞ and let (µn)n≥1 be a sequence in P(E) which
is Cauchy with respect to Wp,E . Then (µn)n≥1 is tight.

Proof. See [166, Lemma 6.14] for a proof under the additional condition that
all measures have finite pth moment. A close inspection of the proof shows
that the same argument works without this assumption. �

Proposition 6.10. Let 1 ≤ p <∞ and suppose that µ, µn ∈P(E) satisfy

Wp,H(µn, µ)→ 0.

Then µn converges weakly to µ.

Proof. We may assume that Wp,H(µn, µ) < ∞ for all n ≥ 1. Consider an
arbitrary subsequence of (µn)n≥1, which we denote again by (µn)n≥1. To prove
the result, it suffices to prove that this subsequence contains a subsequence
converging weakly to µ.

Since
Wp,E(µn, µ) ≤ ‖i‖L(H,E)Wp,H(µn, µ),

Lemma 6.9 implies that there exists a subsequence (µnk)k≥1 converging weakly
to some µ̃ ∈P(E). Take Σnk ∈ Γo(µnk , µ). The tightness of (µn)n≥1 implies
that (Σnk)k≥1 is tight, hence there exists a subsequence Σnkl converging
weakly to some Σ ∈ P(E × E). We claim that Σ ∈ Γ (µ̃, µ). Indeed, for
f ∈ Cb(E),
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E×E

f(x) dΣ(x, y) = lim
l→∞

∫
E×E

f(x) dΣnkl (x, y)

= lim
l→∞

∫
E×E

f(x) dµnkl (x) =
∫
E

f(x) dµ̃(x),

which shows that π1
#Σ = µ̃. Similarly, π2

#Σ = µ. Lemma 6.2 implies that

W p
p,H(µ̃, µ) ≤

∫
E×E

|x− y|pH dΣ(x, y)

≤ lim
l→∞

∫
E×E

|x− y|pH dΣ
nkl (x, y) = lim

l→∞
W p
p,H(µnkl , µ) = 0,

hence µ̃ = µ by Proposition 6.8. This completes the proof. �

Before we stating the next proposition, we introduce some notation which
will be used throughout Part II. Since E is separable, there exists a separating
sequence of functionals (y∗k)k≥1 ⊆ E∗. Applying the Gram-Schmidt procedure
in H to the sequence (i∗y∗k)k≥1 we obtain an orthonormal basis

(i∗x∗k)k≥1 (6.2)

of H which we will keep fixed from now on. We let Pn ∈ L(H) denote the
corresponding orthogonal projections given by

Pnh :=
n∑
k=1

[h, i∗x∗k]H i∗x∗k, h ∈ H.

Each of these operators is the part in H of a bounded operator on E, denoted
by the same symbol, and given by

Pnx :=
n∑
k=1

〈x, x∗k〉Qx∗k, x ∈ E. (6.3)

The next result is an easy generalisation of a well-known result in the
theory of Wasserstein spaces (see, e.g., [165, Theorem 7.12]), where usually ν
is taken to be a Dirac measure.

Proposition 6.11. Let µn, µ ∈ P(E) satisfy WH(µn, µ) → 0, and take ν ∈
PH,µ(E). For every weakly convergent sequence Σn ∈ Γo(µn, ν) we have

lim
M→∞

lim
n→∞

∫
{|x1−x2|H≥M}

|x1 − x2|2H dΣn(x1, x2) = 0.

Proof. We will denote the weak limit of (Σn)n≥1 by Σ. To simplify notation,
set d(x1, x2) := |x1 − x2|H and dM (x1, x2) := |PbMc(x1 − x2)|H ∧M. Since
Σn ⇀ Σ and dM ∈ Cb(E × E),
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lim
n→∞

∫
E×E

d2
M (x1, x2) dΣn =

∫
E×E

d2
M (x1, x2) dΣ. (6.4)

It is clear that Σ ∈ Γ (µ, ν). We claim that Σ ∈ Γo(µ, ν). Indeed, using Lemma
6.2 we obtain

W 2
H(µ, ν) ≤

∫
E×E

d2(x1, x2) dΣ ≤ lim
n→∞

∫
E×E

d2(x1, x2) dΣn

= lim
n→∞

W 2
H(µn, ν) = W 2

H(µ, ν).

It follows that the first inequality above is actually an equality, which proves
the claim. Since WH(µn, ν)→WH(µ, ν), we have

lim
n→∞

∫
E×E

d2(x1, x2) dΣn =
∫
E×E

d2(x1, x2) dΣ. (6.5)

Combining (6.4) and (6.5) we arrive at

lim
n→∞

∫
E×E

d2(x1, x2)− d2
M (x1, x2) dΣn =

∫
E×E

d2(x1, x2)− d2
M (x1, x2) dΣ.

The monotone convergence theorem implies that

lim
M→∞

lim
n→∞

∫
E×E

d2(x1, x2)− d2
M (x1, x2) dΣn = 0.

Using the fact that for x1, x2 ∈ E with d(x1, x2) ≥ 2M,

d2(x1, x2)− d2
M (x1, x2) ≥ d2(x1, x2)−M2 ≥ 3

4
d2(x1, x2),

it follows that

lim
M→∞

lim
n→∞

∫
{d(x1,x2)≥2M}

d2(x1, x2) dΣn = 0,

which proves the result. �

In some results we will impose the following additional assumption:

(H) The embedding i : H ↪→ E is compact.

This assumption is automatically fulfilled if Q = ii∗ is the covariance of a
Gaussian measure. It allows us to prove the following compactness result.

Proposition 6.12. Assume (H). For each µ ∈P(E) and R ≥ 0 the set

BR(µ) := {ν ∈P(E) : WH(µ, ν) ≤ R}

is weakly compact. In particular, the set

{ν ∈P(E) :
∫
E

|x|2H dν(x) ≤ R2}

is weakly compact.
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Proof. Let (νn)n≥1 ⊆ BR(µ) and let Σn ∈ Γo(µ, νn). Let ε > 0 and choose
a compact set K ⊆ E such that µ(E \ K) < ε. By assumption, the set
Br(0) := {x ∈ E : |x|H ≤ r} is compact for each r > 0. Since the Minkowski
sum of compact sets is again compact, the set Kr := K + Br(0) is compact
as well. We obtain

νn(E \Kr) =
∫
E×E

1E\Kr (y) dΣn(x, y)

=
∫
E×E

1K(x)1E\Kr (y) dΣn(x, y)

+
∫
E×E

1E\K(x)1E\Kr (y) dΣn(x, y)

≤
∫
E×E

1K(x)1E\Kr (y)
|x− y|2H

r2
dΣn(x, y) + µ(E \K)

≤ 1
r2
W 2
H(µ, νn) + ε

≤ 2ε,

whenever r is large enough. This shows the tightness of BR(µ). It follows that
Σn is tight as well.

By passing to a subsequence we may assume Σn converges weakly to some
Σ ∈ Γ (µ, ν). In view of Lemma 6.2 we obtain

W 2
H(µ, ν) ≤

∫
E×E

|x− y|2H dΣ(x, y)

≤ lim
n→∞

∫
E×E

|x− y|2H dΣn(x, y) = lim
n→∞

W 2
H(µ, νn) ≤ R,

which shows that ν ∈ BR(µ). We conclude that BR(µ) is weakly compact.
The final assertion follows by observing that the set under consideration

can be written as BR(δ0). �

6.4 Convergence of the inner product

In this section we prove a technical result concerning the limit behaviour
of expressions of the form

∫
E×E [x1, x2]H dΣn for some weakly convergent

sequence of measures (Σn)n≥1. This is not straightforward, since the function
(x1, x2) 7→ [x1, x2]H is not lower semicontinuous on E × E.

In this expression, for x1, x2 ∈ E we set [x1, x2]H :=∞ whenever at least
one of the elements x1, x2 is not contained in H. In most occurrences below
this convention is actually irrelevant, as the inner product appears under an
integral with respect to a measure Σ ∈P(E × E) satisfying Σ(H ×H) = 1.
First we need a lemma.
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Lemma 6.13. Let (µn)n≥1 ⊆ P(E), let f, r : [0,∞] → [0,∞], and suppose
that limt→∞ r(t) = 0. Then g(t) := r(t)f(t) satisfies

C := sup
n≥1

∫
E

f(|x|H) dµn <∞ ⇒ lim
m→∞

sup
n≥1

∫
{|x|H≥m}

g(|x|H) dµn = 0.

In particular, for every 0 < p′ < p,

sup
n≥1

∫
E

|x|pH dµn <∞ ⇒ lim
m→∞

sup
n≥1

∫
{|x|H≥m}

|x|p
′

H dµn = 0

Proof. Clearly,∫
{|x|H≥m}

g(|x|H) dµn ≤
(

sup
|x|≥m

r(|x|H)
)∫
{|x|H≥m}

f(|x|H) dµn,

from which we obtain

sup
n≥1

∫
{|x|H≥m}

g(|x|H) dµn ≤ C sup
t≥m

r(t).

The first part of the result follows by passing to the limit m→∞.
The second part follows by taking f(t) := tp and r(t) = tp

′−p. �

A variant of the next result is proved in the Wiener space setting in [150,
Lemma 3.9]. See also [4, Lemma 5.2.4] for a Hilbert space version.

Proposition 6.14. Let Σ,Σn ∈ P(E × E) and suppose that Σn converges
weakly to Σ. If

lim
n→∞

∫
E×E

|x1|2H dΣn =
∫
E×E

|x1|2H dΣ <∞,

lim
R→∞

lim
n→∞

∫
{|x1|H≥R}

|x1|2H dΣn = 0,
(6.6)

and

sup
n≥1

∫
E

|x2|2H dΣn <∞, (6.7)

then

lim
n→∞

∫
E×E

[x1, x2]H dΣn =
∫
E×E

[x1, x2]H dΣ.

Proof. We set

µ := π1
#Σ, ν := π2

#Σ, µn := π1
#Σn, νn := π2

#Σn,

and divide the proof into three steps.
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Step 1: We show that the function g(x1, x2) := |x1|H |x2|H satisfies

lim
R→∞

lim
n→∞

∫
{g≥R}

g dΣn = 0. (6.8)

Set C2 := supn≥1

∫
E
|x|2H dνn <∞ by (6.7). For n ≥ 1 we have∫

A

g dΣn ≤ C
(∫

A

|x|2H dΣn
)1/2

, A ∈ B(E × E),

thus for R ≥ 0 and m > 0 we obtain∫
{g≥R}

g dΣn =
∫
{g≥R,|x1|H≤m}

g dΣn +
∫
{g≥R,|x1|H>m}

g dΣn

≤
∫
{|x1|H≤m,|x2|H≥ R

m}
g dΣn +

∫
{g≥R,|x1|H>m}

g dΣn

≤ m
∫
{|x|H≥ R

m}
|x|H dνn + C

(∫
{|x|H>m}

|x|2H dµn
)1/2

.

Taking first the limes superior for n→∞, and then the limit for R→∞, we
obtain using Lemma 6.13 and (6.7),

lim
R→∞

lim
n→∞

∫
{g≥R}

g dΣn ≤ C lim
n→∞

(∫
{|x|H>m}

|x|2H dµn
)1/2

.

Passing to the limit m→∞ and using (6.6) we obtain (6.8).
Step 2: For fixed m ≥ 1 we define fm ∈ C(E × E) by fm(x1, x2) :=

[Pmx1,Pmx2]H , and claim that

lim
n→∞

∫
E×E

fm dΣn =
∫
E×E

fm dΣ.

For each integer R > 0, take a continuous function ψR : [0,∞) → [0, 1]
with ψR([0, R]) = {1} and ψR([R + 1,∞)) = {0}. We define gm ∈ C(E) by
gm(x1, x2) := |Pmx1|H |Pmx2|H and write

fm = fm · (ψR ◦ gm) + fm · (1− ψR ◦ gm). (6.9)

and analyse both terms separately.
Note that g is integrable with respect to Σ, since Lemma 6.2 and the

assumptions on µn and νn imply that∫
E×E

g dΣ ≤
(∫

E×E
|x1|2H dΣ

)1/2(∫
E×E

|x2|2H dΣ
)1/2

=
(∫

E

|x|2H dµ
)1/2(∫

E

|x|2H dν
)1/2

≤ lim
n→∞

(∫
E

|x|2H dµn
)1/2

lim
n→∞

(∫
E

|x|2H dνn
)1/2

<∞.

(6.10)
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Since |fm| ≤ g we may use dominated convergence to obtain

lim
R→∞

∫
E×E

fm · (ψR ◦ gm) dΣ =
∫
E×E

fm dΣ. (6.11)

To estimate the second term, we use again that |fm| ≤ g and find

lim
n→∞

∫
E×E

|fm| · (1− ψR ◦ gm) dΣn ≤ lim
n→∞

∫
{|g|≥R}

g dΣn.

Passing to the limit R→∞ and using (6.8), we obtain

lim
R→∞

lim
n→∞

∫
E×E

|fm| · (1− ψR ◦ gm) dΣn ≤ lim
R→∞

lim
n→∞

∫
{|g|≥R}

g dΣn = 0.

(6.12)
Since fm · (ψR ◦ gm) ∈ Cb(E × E) and Σn ⇀ Σ, we find

lim
n→∞

∫
E×E

fm dΣn

= lim
n→∞

(∫
E×E

fm · (ψR ◦ gm) dΣn +
∫
E×E

fm · (1− ψR ◦ gm) dΣn

)
=
∫
E×E

fm · (ψR ◦ gm) dΣ + lim
n→∞

∫
E×E

fm · (1− ψR ◦ gm) dΣn.

(6.13)
Using (6.11) and (6.12) to pass to the limit R→∞ we arrive at

lim
n→∞

∫
E×E

fm dΣn =
∫
E×E

fm dΣ.

Similarly, replacing lim by lim in (6.13), we obtain

lim
n→∞

∫
E×E

fm dΣn =
∫
E×E

fm dΣ,

which completes the proof of Step 2.
Step 3: We complete the proof.
Using the Cauchy-Schwarz inequality, orthogonality, and (6.7), we have∣∣∣ ∫

E×E
[(I − Pm)x1, x2]H dΣn

∣∣∣
≤
(∫

E×E
|(I − Pm)x1|2H dΣn

)1/2(∫
E×E

|x2|2H dΣn
)1/2

≤ C
(∫

E×E
|x1|2H dΣn −

∫
E×E

|Pmx1|2H dΣn
)1/2

.

Using (6.6) and the continuity of x 7→ |Pmx|2H combined with Lemma 6.2, we
arrive at
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lim
n→∞

∣∣∣ ∫
E×E

[(I − Pm)x1, x2]H dΣn
∣∣∣

≤ C
(∫

E×E
|x1|2H dΣ −

∫
E×E

|Pmx1|2H dΣ
)1/2

.

Passing to the limit m→∞, and using the dominated convergence theorem,

lim
m→∞

lim
n→∞

∣∣∣ ∫
E×E

[(I − Pm)x1, x2]H dΣn
∣∣∣ = 0.

Passing to the limit n→∞ and then m→∞ in the identity∫
E×E

[x1, x2]H dΣn =
∫

E×E

[Pmx1,Pmx2]H dΣn +
∫

E×E

[(I − Pm)x1, x2]H dΣn,

we obtain using Step 2 and dominated convergence (which can be applied
since |f | ≤ g and g is integrable with respect to Σ by (6.10)),

lim
n→∞

∫
E×E

[x1, x2]H dΣn = lim
m→∞

lim
n→∞

∫
E×E

[Pmx1,Pmx2]H dΣn

= lim
m→∞

∫
E×E

[Pmx1,Pmx2]H dΣ

=
∫
E×E

[x1, x2]H dΣ.

(6.14)

Replacing lim by lim in (6.14) we obtain

lim
n→∞

∫
E×E

[x1, x2]H dΣn =
∫
E×E

[x1, x2]H dΣ, (6.15)

which completes the proof. �





7

Paths

In this chapter we study paths of probability measures on E which are abso-
lutely continuous with respect to the Wasserstein metric WH . It will be shown
that a continuity equation can be associated with such paths. Furthermore
we introduce tangent spaces for measures µ ∈ P(E) and velocity fields as-
sociated with smooth paths. These objects will play an important role in the
study of gradient flows in (P(E),WH).

7.1 Absolute continuity in metric spaces

We start by recalling some general facts concerning absolute continuity in
metric spaces. More information on this topic can be found in [4].

Let (X, d) be a complete metric space, let J ⊆ R be an interval, and let
1 ≤ p ≤ ∞. We say that a function u : J → X belongs to ACp(J ;X) if there
exists m ∈ Lp(J) such that, for any s, t ∈ J with s < t,

d(u(s), u(t)) ≤
∫ t

s

m(r) dr. (7.1)

If p = 1 we simply write AC(J ;X) and say that u is absolutely continuous.
We say that u : J → X is contained in ACploc(J ;X) if the restriction of u

to each compact subinterval J ′ ⊆ J is contained in ACp(J ;X).

Theorem 7.1. If u ∈ AC(J ;X), then the metric derivative

|u′|(t) := lim
h→0

d(u(t+ h), u(t))
|h|

exists a.e. on J, we have |u′| ∈ L1(J), and

d(u(s), u(t)) ≤
∫ t

s

|u′|(r) dr
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for any s, t ∈ J with s < t. Moreover, for any m satisfying (7.1) we have
|u′|(t) ≤ m(t) a.e. on J.

Proof. See [4, Theorem 1.1.2]. �

The results summarised above will be applied to the Wasserstein space
(P(E),WH). The fact that WH is a pseudo-distance attaining the value +∞
will not cause problems, since we may apply the theory in each component
PH,µ(E) for µ ∈P(E).

7.2 Absolutely continuous paths of probability measures

We return to the setting described in Section 6.2:

• E is a real separable Banach space,
• H is a real separable Hilbert space,
• i : H ↪→ E is a continuous embedding.

Unless indicated otherwise, we will always endow P(E) with the pseudo-
metric WH .

Let C be the vector space consisting of all real-valued functions on E which
can be written in the form

f(x) = ϕ(〈·, x∗1〉, . . . , 〈·, x∗n〉), x ∈ E, (7.2)

for some n ≥ 1 and ϕ ∈ C∞b (Rn). Recall that the functionals (x∗k)k≥1 appear-
ing in this expression have been defined in (6.2). For f ∈ C of the form (7.2)
we define its gradient ∇Hf : E → H by

∇Hf(x) :=
n∑
k=1

∂kφ(〈x, x∗1〉, . . . , 〈x, x∗n〉)i∗x∗k, x ∈ E.

For µ ∈P(E) we consider the tangent space

THµ := {∇Hf : f ∈ C} ⊆ L2(µ;H),

where the closure is taken in L2(µ;H). An explanation for this terminology
will be given by Theorem 7.4 below.

Let J ⊆ R be an interval. For a weakly continuous path (µt)t≥0 ⊆P(E)
we let Mµ denote the Borel measure on the product J×E whose disintegration
is given by

Mµ :=
∫
J

µt dt.

The following result shows that a continuity equation can be associated
with smooth paths of probability measures on E. The proof proceeds along
the lines of [4, Theorem 8.3.1] and [59, Theorem 2.3].
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Theorem 7.2. Let J ⊆ R be an interval, and let (µt)t∈J ∈ AC2(J ; P(E)).
Then there exists a unique Z ∈ L2(Mµ;H) such that Zt ∈ THµt a.e. and

∂tµt +∇H · (Ztµt) = 0

in the following sense: for all α ∈ C∞c (J) and f ∈ C,∫
J

∫
E

(
α′(t)f(x) + α(t)[∇Hf(x), Zt(x)]H

)
dµt(x) dt = 0. (7.3)

Moreover, for a.e. t ∈ J we have∫
J

∫
E

|Zt(x)|2H dµt(x) dt ≤
∫
J

|µ′|2(t) dt,

where |µ′| denotes the metric derivative.

In this case we say that Z = (Zt)t∈J is the velocity field along the path
µ = (µt)t∈J .

Proof. Let V be the closure in L2(Mµ;H) of the space

V :=
{

(t, x) 7→
n∑
i=1

αi(t)∇Hfi(x) : n ≥ 1, αi ∈ C∞c (J), fi ∈ C
}
.

The idea of the proof is to show that the linear functional

` :
n∑
i=1

αi ⊗∇Hfi 7→
n∑
i=1

∫
J

∫
E

α′i(t)fi(x) dµt(x) dt

is well defined and bounded on V with respect to the norm of L2(Mµ;H). Once
this fact is established, we conclude from the Riesz representation theorem
that there exists a unique Z ∈ V such that for any α ∈ C∞c (J) and f ∈ C,∫

J

∫
E

α′(t)f(x) dµt(x) dt = `(α⊗∇Hf)

=
∫
J

∫
E

α(t)[∇Hf(x), Zt(x)]H dµt(x) dt,

which is the desired result. We will derive the boundedness of ` in three steps.
Step 1: For s, t ∈ J, we take Σt

s ∈ Γo(µs, µt), and observe that for f ∈ C,∫
E

f(x) dµt(x)−
∫
E

f(x) dµt+η(x) =
∫
E×E

f(x)− f(y) dΣt+η
t (x, y)

=
∫
E×E

[K(x, y), x− y]H dΣ
t+η
t (x, y),

(7.4)
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where

K(x, y) :=
∫ 1

0

∇Hf((1− t)x+ ty) dt, x, y ∈ E. (7.5)

For any α ∈ C∞c (J) and η > 0 we obtain, after extending α by 0 outside J,∫
J

∫
E

(
α(t)− α(t− η)

)
f(x) dµt(x) dt

=
∫
J

α(t)
(∫

E

f(x) dµt(x)−
∫
E

f(x) dµt+η(x)
)
dt

=
∫
J

α(t)
(∫

E×E
[K(x, y), x− y]H dΣ

t+η
t (x, y)

)
dt.

Step 2: We will prove that for t ∈ J, for c1, . . . , cm ∈ R, and for
f1, . . . , fm ∈ C, we have

lim
η→0

∫
E×E

∣∣∣ m∑
j=1

cjKj(x, y)
∣∣∣2
H
dΣt+η

t (x, y) ≤
∥∥∥ m∑
j=1

cj∇Hfj
∥∥∥2

L2(µt;H)
,

where Kj(x, y) :=
∫ 1

0
∇Hfj((1− t)x+ ty) dt for x, y ∈ E and j = 1, . . . ,m.

Fix t ∈ J and take a sequence ηn → 0 for which∫
E×E

∣∣∣ m∑
j=1

cjKj(x, y)
∣∣∣2
H
dΣt+ηn

t (x, y)

converges (possibly to +∞). Since (µηn)n≥1 is WH -convergent, it is tight by
Lemma 6.9. This implies the tightness of (Σt+ηn

t )n≥1, hence (up to a subse-
quence) this sequence has a weak limit Σ̂ ∈ Γ (µt, µt). Using Lemma 6.2 we
obtain ∫

E×E
|x− y|2H dΣ̂(x, y) ≤ lim

n→∞

∫
E×E

|x− y|2H dΣ
t+ηn
t (x, y)

= lim
n→∞

W 2
H(µt, µt+ηn)

= 0.

It follows that Σ̂(D) = 1, where D = {(x, x) ∈ E × E : x ∈ E}. Combined
with the fact that Σ̂ ∈ Γ (µt, µt) this implies that Σ̂ = (I × I)#µt. Since
(Σt+ηn

t ) converges weakly and |
∑m
j=1 cjKj |2 ∈ Cb(E × E), we find

lim
n→∞

∫
E×E

∣∣∣ m∑
j=1

cjKj(x, y)
∣∣∣2
H
dΣt+ηn

t (x, y) =
∫
E×E

∣∣∣ m∑
j=1

cjKj(x, y)
∣∣∣2
H
dΣ̂(x, y)

=
∫
E

∣∣∣ m∑
j=1

cjKj(x, x)
∣∣∣2
H
dµt(x)

=
∫
E

∣∣∣ m∑
j=1

cj∇Hfj(x)
∣∣∣2
H
dµt(x).



7.2 Absolutely continuous paths of probability measures 157

Step 3: We will show that ` is well defined, and that for any αi ∈ C∞c (J)
and fi ∈ C we have

`
( n∑
i=1

αi ⊗∇Hfi
)
≤ ‖|µ′|‖L2(J)

∥∥∥ n∑
i=1

αi ⊗∇Hfi
∥∥∥
V
.

Using the dominated convergence theorem, Step 1, and the Cauchy-
Schwarz inequality we obtain∣∣∣ ∫

J

∫
E

n∑
i=1

α′i(t)fi(x) dµt(x) dt
∣∣∣

= lim
η↓0

∣∣∣1
η

∫
J

∫
E

n∑
i=1

(
αi(t)− αi(t− η)

)
fi(x) dµt(x) dt

∣∣∣
= lim

η↓0

∣∣∣1
η

∫
J

∫
E×E

n∑
i=1

αi(t)[Ki(x, y), x− y]H dΣ
t+η
t (x, y) dt

∣∣∣
≤ lim

η↓0

(∫
J

∫
E×E

∣∣∣ n∑
i=1

αi(t)Ki(x, y)
∣∣∣2
H
dΣt+η

t (x, y) dt
)1/2

×
(∫

J

∫
E×E

|x− y|2H
η2

dΣt+η
t (x, y) dt

)1/2

≤ lim
η↓0

(∫
J

∫
E×E

∣∣∣ n∑
i=1

αi(t)Ki(x, y)
∣∣∣2
H
dΣt+η

t (x, y) dt
)1/2

× lim
η↓0

(∫
J

∫
E×E

|x− y|2H
η2

dΣt+η
t (x, y) dt

)1/2

.

(7.6)

Since
∫
E
|
∑n
i=1 αi(t)Ki(x, y)|2H dΣ

t+η
t (x, y) is uniformly bounded for t ∈ J

and η > 0, we may apply Fatou’s Lemma and Step 2 to obtain

lim
η↓0

(∫
J

∫
E×E

∣∣∣ n∑
i=1

αi(t)Ki(x, y)
∣∣∣2
H
dΣt+η

t (x, y) dt
)1/2

≤
(∫

J

lim
η↓0

∫
E×E

∣∣∣ n∑
i=1

αi(t)Ki(x, y)
∣∣∣2
H
dΣt+η

t (x, y) dt
)1/2

≤
(∫

J

∥∥∥ n∑
i=1

αi(t)∇Hfi
∥∥∥2

L2(µt;H)
dt
)1/2

=
∥∥∥ n∑
i=1

αi ⊗∇Hfi
∥∥∥
V
.

(7.7)

For m as in (7.1), we have

sup
η>0

1
η
WH(µt, µt+η) ≤ sup

η>0

1
η

∫ t+η

t

m(s) ds ≤ m∗(t), a.e. on J,
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where m∗(t) := supη>0
1
η

∫ t+η
t
|m(s)| ds denotes the one-sided Hardy-Little-

wood maximal function, which is contained in L2(J) by the maximal theorem
[71, Theorem 2.1.6]. Therefore we can use the dominated convergence theorem
and Theorem 7.1 to obtain

lim
η↓0

∫
J

∫
E

|x− y|2H
η2

dΣt+η
t (x, y) dt = lim

η↓0

∫
J

W 2
H(µt, µt+η)

η2
dt

=
∫
J

lim
η↓0

W 2
H(µt, µt+η)

η2
dt

=
∫
J

|µ′t|2 dt.

(7.8)

Combining (7.6), (7.7), and (7.8) we find that∣∣∣ ∫
J

∫
E

n∑
i=1

α′i(t)fi(x) dµt(x) dt
∣∣∣ ≤ ∥∥∥ n∑

i=1

αi ⊗∇Hfi
∥∥∥
V

(∫
J

|µ′t|2 dt
)1/2

,

which implies that ` is well defined and∣∣∣`( n∑
i=1

αi ⊗∇Hfi
)∣∣∣ ≤ ∥∥∥ n∑

i=1

αi ⊗∇Hfi
∥∥∥
V
‖ |µ′| ‖L2(J).

This completes the proof. �

It has been shown in [150, Theorem 2.7] that a converse to Theorem 7.2 can
be deduced from [4, Theorem 8.3.1]. The same argument works in our setting.
Since the proof involves a finite dimensional approximation argument, it is
natural to introduce

Pf (E) := {µ ∈P(E) : (Pn)#µ ⇀ µ as n→∞}.

We remark that in the situation where H is the reproducing kernel Hilbert
space of a Gaussian measure γ ∈P(E) and H ⊆ H as subsets of E, we have
µ ∈ Pf (E) for each µ ∈ P(E) which is absolutely continuous with respect
to γ (see Proposition 10.8 below).

Theorem 7.3. Suppose that µ := (µt)t∈J ⊆ Pf (E) is a weakly continuous
path satisfying the continuity equation

∂tµt +∇H · (Ztµt) = 0

in the sense of (7.3) for some Z ∈ L2(µ;H). Then µ ∈ AC2(J ; P(E)) and
|µ′|(t) ≤ ‖Zt‖L2(µt;H) for a.a. t ∈ J.

Proof. See [150, Theorem 2.7]. �
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7.3 Linearisation of paths

In this section it will be shown that the velocity field obtained in Theorem
7.2 can be used to define a kind of linear approximation to a WH -absolutely
continuous path of probability measures on E.

Loosely speaking, the next theorem asserts that the velocity field along a
smooth path can be obtained by taking a certain difference quotient of optimal
plans, and pass to the limit. The result will be useful in Chapter 9.

A slightly weaker version of this result has been proved in [150, Proposition
2.11], where the authors work in Wiener spaces and show weak convergence.
The Hilbertian version can be found in [4, Proposition 8.4.6].

Theorem 7.4. Assume (H). Let J ⊆ R be an interval, and consider a path
(µt)t∈J ∈ AC2(J ; Pf (E)) with associated velocity field Z ∈ L2(Mµ;H). For
s, t ∈ J, take Σt

s ∈ Γo(µs, µt). For a.a. t ∈ J we have(
π1 × 1

h
(π2 − π1)

)
#
Σt+h
t → (IE × Zt)#µt in WH×H-distance, as h→ 0,

and

lim
h→0

1
h
WH(µt+h, (IE + hZt)#µt) = 0. (7.9)

Proof. We proceed in several steps.
Step 1: There exists a countable set D ⊆ C which is dense in C with respect
to the norm

‖f‖1,∞ = sup
x∈E

(
|f(x)|+ |∇Hf(x)|H

)
,

and a nullset N ⊆ J such that

lim
h→0

WH(µt, µt+h)
|h|

= |µ′|(t) ≤ ‖Zt‖L2(µt;H) <∞, (7.10)

and

lim
h→0

1
h

(∫
E

f dµt+h −
∫
E

f dµt

)
=
∫
E

[∇Hf, Zt]H dµt, (7.11)

for any f ∈ D and any t ∈ J \N.
In the proof we let h ↓ 0. The argument for h ↑ 0 is similar. Let f ∈ C, α ∈

C∞c (J), and extend α by 0 outside J . By (7.3) and the dominated convergence
theorem we have
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J

∫
E

α(t)[∇Hf(x), Zt(x)]H dµt(x) dt

=
∫
J

∫
E

α′(t)f(x) dµt(x) dt

= lim
h↓0

∫
J

∫
E

α(t)− α(t− h)
h

f(x) dµt(x) dt

= lim
h↓0

∫
J

α(t)
1
h

(∫
E

f(x) dµt(x)−
∫
E

f(x) dµt+h(x)
)
dt.

(7.12)

We would like to apply the dominated convergence theorem to the right hand
side. To find an integrable majorant function, we take K as in (7.5), set
Cf := supx∈E |∇Hf(x)|H , take m as in (7.1) and let

m∗(t) := sup
h>0

1
h

∫ t+h

t

|m(s)| ds

denote the (one-sided) Hardy-Littlewood maximal function. Using (7.4) we
obtain∣∣∣∣ 1h

∫
E

f(x) dµt(x)−
∫
E

f(x) dµt+h(x)
∣∣∣∣

=
∣∣∣∣ 1h
∫
E×E

[K(x, y), x− y]H dΣt+h
t

∣∣∣∣
≤ 1
h

(∫
E×E

|K(x, y)|2H dΣt+h
t (x, y)

)1/2(∫
E×E

|x− y|2H dΣt+h
t

)1/2

≤ Cf
WH(µt, µt+h)

h

≤ Cf
1
h

∫ t+h

t

m(s) ds

≤ Cfm∗(t).

Since m∗, α ∈ L2(J), we may apply dominated convergence to the right hand
side of (7.12) to obtain∫

J

∫
E

α(t)[∇Hf(x), Zt(x)]H dµt(x) dt

=
∫
J

α(t)
[

lim
h↓0

1
h

(∫
E

f(x) dµt(x)−
∫
E

f(x) dµt+h(x)
)]

dt.

Since α ∈ C∞c (J) is arbitrary, we find for each f ∈ C a nullset Nf ⊆ J such
that (7.11) holds for any t ∈ J \Nf .

The validity of (7.10) for all t ∈ J ouside of a nullset N ′ follows from
Theorem 7.3.
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It remains to construct D and N. Let Fn ⊆ C∞b (Rn) be countable and
dense in the separable Banach space C1

b(Rn), and define Dn to be the set of
all functions f : E → R of the form

f(x) = φ(〈x, x∗1〉, . . . , 〈x, x∗n〉), φ ∈ Fn.

Clearly, D := ∪n≥1Dn is dense in C with respect to the ‖ · ‖1,∞-norm. This
completes the proof of the first step with N := N ′ ∪

⋃
f∈DNf .

From now on we keep t ∈ J \N fixed, and write

ηh :=
(
π1,

1
h

(π2 − π1)
)
#
Σt+h
t , h > 0.

Step 2: The collection (ηh)h∈(0,δ) is tight for some δ > 0.
First we observe that∫

E×E
|y|2H dηh(x, y) =

1
h2

∫
E×E

|x− y|2H dΣt+h
t (x, y)

=
1
h2
W 2
H(µt, µt+h).

(7.13)

Let ε > 0 and take a compact set K ⊆ E such that µt(K) ≥ 1 − ε. Writing
BR(0) := {x ∈ E : |x|H ≤ R} and using (7.13) and (7.10), we obtain

ηh
((
K ×BR(0)

)c) ≤ ηh(Kc × E) + ηh(E ×BR(0)c)

≤ ε+
1
R2

∫
E×E

|y|2H dηh(x, y)

= ε+
1

R2h2

∫
E×E

|x− y|2H dΣt+h
t (x, y)

= ε+
W 2
H(µt, µt+h)
R2h2

≤ 2ε,

whenever R is large enough. Now the claim follows, since we assumed (H).
Step 3: According to the previous step there exists η0 ∈ P(E × E) and a
sequence hn ↓ 0 such that ηhn converges weakly to η0. Using disintegration
we may write η0 =

∫
E
η0x dµt(x) with (η0x)x∈E ⊆ P(E). We put Yt(x) :=∫

E
y dη0x(y) and claim that∫

E

[∇Hf, Yt − Zt]H dµt = 0, f ∈ D.

Using (7.11) we find
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1
h

(∫
E

f dµt+h −
∫
E

f dµt

)
=

1
h

∫
E×E

f(y)− f(x) dΣt+h
t (x, y)

=
1
h

∫
E×E

f(x+ hy)− f(x) dηh(x, y)

=
∫
E×E

[∇Hf(x), y]H + ωx,y(h) dηh(x, y),

(7.14)
where |ωx,y(h)| ≤ 1

2hCf |y|
2
H and Cf := supx∈E ‖D2

Hf(x)‖L(H). Using (7.10)
we obtain

lim
h→0

∫
E×E

|ωx,y(h)| dηh(x, y) ≤ lim
h→0

hCf
2

∫
E×E

|y|2H dηh(x, y)

≤ lim
h→0

Cf
2h

∫
E×E

|x− y|2H dΣt+h
t (x, y)

= lim
h→0

Cf
2h
W 2
H(µt, µt+h)

= 0.

(7.15)

We will show by means of Proposition 6.14 that

lim
h→0

∫
E

[∇Hf(x), y]H dηh(x, y) =
∫
E

[∇Hf(x), y]H dη0(x, y). (7.16)

Indeed, since ∇Hf ∈ L2(µt;H) and π1
#ηh = µt for every h ∈ (0, δ), we have

lim
M→∞

lim
n→∞

∫
{|∇Hf(x)|H≥M}

|∇Hf(x)|2H dηhn(x, y)

= lim
M→∞

∫
{|∇Hf(x)|H≥M}

|∇Hf(x)|2H dµt(x) = 0

and ∫
E×E

|∇Hf(x)|2H dηhn =
∫
E

|∇Hf(x)|2H dµt =
∫
E×E

|∇Hf(x)|2H dη0.

Moreover, using (7.13) we obtain, as in Step 1,

sup
n≥1

∫
E

|y|2H dηhn(x, y) = sup
n≥1

1
h2
n

W 2
H(µt, µt+hn) ≤ m∗(t)2 <∞.

Therefore (7.16) follows from Proposition 6.14.
Passing to the limit in (7.14) and taking (7.11) and (7.15) into account,

we obtain
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E

[∇Hf(x), Zt(x)]H dµt(x) = lim
h→0

∫
E×E

[∇Hf(x), y]H dηh(x, y)

=
∫
E×E

[∇Hf(x), y]H dη0(x, y)

=
∫
E×E

[∇Hf(x), Yt(x)]H dµt(x).

Step 4:We claim that

η0 = (IE × Zt)#µt.

Using Jensen’s inequality, Lemma 6.2, (7.10) and (7.13), we find

‖Yt‖2L2(µt;H) =
∫
E

∣∣∣∣ ∫
E

y dη0x(y)
∣∣∣∣2
H

dµt(x)

≤
∫
E×E

|y|2H dη0x(y) dµt(x)

≤ lim
h→0

∫
E×E

|y|2H dηh(x, y)

= lim
h→0

1
h2
W 2
H(µt, µt+h)

≤ ‖Zt‖2L2(µt;H).

(7.17)

Since ∇H(D) is dense in THµt and Zt ∈ THµt , Step 3 implies that
∫
E

[Zt, Yt −
Zt]H dµt = 0. Combined with the previous estimate we conclude that Yt = Zt
µt-a.e.

In particular, the first inequality in (7.17) is actually an equality, which
implies that for µt-a.e. x ∈ E,∣∣∣∣ ∫

E

y dη0x(y)
∣∣∣∣2
H

=
(∫

E

|y|H dη0x(y)
)2

=
∫
E

|y|2H dη0x(y).

These identities imply that there exist a unit vector yx ∈ H, and cx, αx(y) ≥ 0
such that for η0x-a.a. y ∈ E,

y = αx(y)yx and |y|H = cx,

which is absurd unless η0x = δcxyx . Since Zt(x) = Yt(x) =
∫
E
y dη0x(y) we

conclude that cxyx = Zt(x) for µt-a.a x ∈ E, hence η0 = (IE × Zt)#µt. This
completes the proof of Step 4.
Step 5: We claim that∫

E

|Zt(x)|2H dµt(x) ≤ lim
h→0

∫
E×E

[Zt(x), y]H dηh(x, y).
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Since Zt ∈ L2(µt;H) and π1
#ηh = µt = π1

#η0 for any h ∈ (0, δ), we have

lim
M→∞

lim
n→∞

∫
{|Zt(x)|H≥M}

|Zt(x)|2H dηhn(x, y)

= lim
M→∞

∫
{|Zt(x)|H≥M}

|Zt(x)|2H dµt(x) = 0

and for every n ≥ 1,∫
E×E

|Zt(x)|2H dηhn(x, y) =
∫
E

|Zt(x)|2H dµt(x).

Moreover, by (7.13),

sup
h∈(0,δ)

∫
E×E

|y|2H dηh(x, y) = sup
h∈(0,δ)

1
h2
W 2
H(µt, µt+h) ≤ m∗(t)2 <∞.

Therefore Proposition 6.14 implies that

lim
n→∞

∫
E×E

[Zt(x), y]H dηhn(x, y) =
∫
E×E

[Zt(x), y]H dη0(x, y).

Since Step 4 implies that∫
E×E

[Zt(x), y]H dη0(x, y) =
∫
E

|Zt(x)|2H dµt(x),

the proof of Step 5 is complete.
Step 6: We have

lim
h→0

1
h
WH(µt+h, (IE + hZt)#µt) = 0 and lim

h→0
WH×H(ηh, (IE × Zt)#µt) = 0.

To bound the first distance we estimate

1
h2
W 2
H(µt+h,(IE + hZt)#µt)

≤ 1
h2

∫
E×E

|x− y|2H d(π2 × (IE + hZt) ◦ π1)#Σt+h
t (x, y)

=
∫
E×E

∣∣ 1
h

(y − x)− Zt(x)
∣∣2
H
dΣt+h

t (x, y)

=
∫
E×E

|y − Zt(x)|2H dηh(x, y).

The second distance can be bounded by the same expression:
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WH×H(ηh, (IE × Zt)#µt) ≤
∫
E2×E2

|(x1, x2)− (y1, y2)|2H×H

d
(
IE×E ×

(
(IE × Zt) ◦ π1

))
#
ηh(x, y)

=
∫
E×E

|(x1, x2)− (x1, Zt(x1))|2H×H dηh(x1, x2)

=
∫
E×E

|x2 − Zt(x1)|2H dηh(x1, x2).

Therefore both statements are proved once we have shown that

lim
h→0

∫
E×E

|y − Zt(x)|2H dηh(x, y) = 0.

Combining (7.10) and (7.13) we arrive at

lim
h→0

∫
E×E

|y|2H dηh(x, y) ≤
∫
E

|Zt(x)|2H dµt(x).

Using this and Step 5 we obtain

lim
h→0

∫
E×E

|y − Zt(x)|2H dηh

= lim
h→0

∫
E×E

|y|2H dηh − 2
∫
E×E

[Zt(x), y]H dηh +
∫
E

|Zt(x)|2H dµt

≤ 0,

which completes the proof. �
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Functionals

In this chapter we study functionals defined on the Wasserstein space. We
study various notions of convexity and introduce subdifferentials for func-
tionals, in the spirit of Hilbert space theory [18]. Following the approach of
[4, 150], we investigate the properties of subdifferentials, which will be useful
in the study of gradient flows in Chapter 9.

First we summarise some results for functionals on metric spaces from [4].

8.1 Functionals on metric spaces

Let (X, d) be a complete metric space. Let φ : X → R ∪ {∞} be proper, i.e.,

D(φ) := {x ∈ X : φ(x) <∞} 6= ∅.

and lower semicontinuous. For h > 0 and x ∈ D(φ) we consider the function

Φ(h, x; ·) : X → R ∪ {∞}, y 7→ φ(y) +
1

2h
d2(y, x).

We consider the following additional assumptions:

(A1) (Coercivity) There exist x̃ ∈ X, r > 0, and m ∈ R such that φ(x) ≥ m
for every x ∈ X with d(x, x̃) ≤ r.

(A2) (Generalised λ-convexity) There exists λ ∈ R such that for every
y, x0, x1 ∈ D(φ) there exists a map u : [0, 1] → X satisfying u(0) = x0,
u(1) = x1 and

Φ(h, y;u(t)) ≤ (1− t)Φ(h, y;x0) + tΦ(h, y;x1)

− 1
2

(
1
h

+ λ)t(1− t)d2(x0, x1)

for every t ∈ [0, 1] and every h ∈ Iλ := {t > 0 : 1 + tλ > 0}.



168 8 Functionals

Under these assumptions, it has been shown in [4, Theorem 4.1.2] that for
h ∈ Iλ and x ∈ D(φ), the function Φ(h, x; ·) has a unique minimizer denoted
by Jhx .

The Moreau-Yosida approximation is defined by

φh(x) := inf
y∈X

Φ(h, x; y) = φ(Jhx) +
1

2h
d2(Jhx, x), x ∈ D(φ).

Definition 8.1. The local slope |∂φ| : X → [0,∞] is defined by |∂φ|(x) = 0 if
x is isolated in D(φ), and otherwise

|∂φ|(x) := lim
y→x,y∈D(φ)

(
φ(x)− φ(y)

)+
d(x, y)

.

Obviously, we have D(|∂φ|) ⊆ D(φ). In the next two propositions we collect
some fundamental properties of Jh, φh, and |∂φ|.

Proposition 8.2. Let φ : X → R ∪ {∞} be a proper lsc functional satisfying
(A1) and (A2).

(i) For h ∈ Iλ and x ∈ D(φ) we have Jhx ∈ D(|∂φ|) and

|∂φ|(Jhx) ≤ 1
h
d(Jhx, x). (8.1)

(ii) x ∈ D(φ) iff

d(Jhx, x) ↓ 0 as h ↓ 0. (8.2)

(iii) For x ∈ D(φ) we have

φ(Jhx) ↑ φ(x) as h ↓ 0. (8.3)

(iv) For x ∈ D(φ) we have

φh(x) ↑ φ(x) as h ↓ 0. (8.4)

Proof. See [4, Lemmas 3.1.2 & 3.1.3] or [35, Proposition 4.1]. �

Proposition 8.3. Let φ : X → R ∪ {∞} be a proper lsc functional satisfying
(A1) and (A2). For h ∈ Iλ and x ∈ D(|∂φ|) we have

φ(x) ≤ φh(x) +
h

2
|∂φ|2(x) (8.5)

and

|∂φ|(x) = lim
h→0
|∂φ|(Jhx) = lim

h→0

d(x, Jhx)
h

= lim
h→0

(
2
φ(x)− φh(x)

h

)1/2

= lim
h→0

(φ(x)− φ(Jhx)
h

)1/2

.

(8.6)

Proof. See [4, Theorem 3.1.6] or [35, Proposition 4.3]. �
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8.2 Convexity along generalised geodesics

Optimal transport plans provide a natural way to interpolate between proba-
bility measures. It has been discovered by McCann [118] in a seminal paper
that various interesting functionals enjoy convexity properties along the inter-
polated paths given by optimal transport plans. This observation has many
consequences; in particular to functional inequalities, Ricci curvature lower
bounds, and gradient flows.

In [4] a more general type of interpolation between probability measures
has been considered, which allows for the application of the abstract theory
of gradient flows in metric spaces described in Section 8.1 to functionals on
the Wasserstein space.

The crucial notion is the following:

Definition 8.4. Let µ0, µ1, ν ∈P(E). A generalised geodesic joining µ0 and
µ1 (with base ν) is a path (µt)t∈[0,1] ⊆P(E) of the form

µt := (π2→3
t )#Ξ, t ∈ [0, 1],

for some Ξ ∈ Γ (ν, µ0, µ1) satisfying

π1,2
# Ξ ∈ Γo(ν, µ0), π1,3

# Ξ ∈ Γo(ν, µ1).

Definition 8.5. Let λ ∈ R. A proper functional φ : P(E)→ R∪{∞} is said
to be

(i) λ-convex if for any µ0, µ1 ∈ D(φ) with WH(µ0, µ1) < ∞, there exists
an optimal transport plan Σ ∈ Γo(µ0, µ1) such that µt := (π1→2

t )#Σ
satisfies

φ
(
µt) ≤ (1− t)φ(µ0) + tφ(µ1)− λ

2
t(1− t)W 2

H(µ0, µ1), t ∈ [0, 1].

(ii) λ-convex along generalised geodesics if for any µ0, µ1, ν ∈ D(φ) with
WH(ν, µi) <∞ for i = 0, 1, there exists a generalised geodesic (µt)t∈[0,1]

joining µ0 and µ1 with base ν, such that

φ
(
µt) ≤ (1− t)φ(µ0) + tφ(µ1)− λ

2
t(1− t)W 2

H(µ0, µ1), t ∈ [0, 1].

Both convexity notions are related by the following result:

Proposition 8.6. Let λ ∈ R and let φ : P(E)→ R∪ {∞} be λ-convex along
generalised geodesics. Then φ is λ-convex.

Proof. Take µ0, µ1 ∈ P(E) with WH(µ0, µ1) < ∞. Definition 8.5 applied to
ν = µ0 yields the existence of Ξ ∈ Γ (µ0, µ0, µ1) with π1,2

# Ξ ∈ Γo(µ0, µ0)
and π1,3

# Ξ ∈ Γo(µ0, µ1). Since Γo(µ0, µ0) = {(IE × IE)#µ0}, it follows that
Ξ = π1,1,2

# Σ for some Σ ∈ Γo(µ0, µ1). Since (π2→3
t )#Ξ = (π1→2

t )#Σ, the
result follows. �
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The following result expresses a convexity property of the squared Wasser-
stein distance along generalised geodesics. In particular, it implies that func-
tionals which are λ-convex along generalised geodesics satisfy (A2).

Proposition 8.7. Let µ, µ0, µ1 ∈ P(E) satisfy WH(µ, µi) < ∞, for i = 0, 1
and let Σ ∈ P(E3) be such that π1,2

# Σ ∈ Γo(µ, µ0) and π1,3
# Σ ∈ Γo(µ, µ1).

Set µt := (π2→3
t )#Σ. Then

W 2
H(µ, µt) ≤ (1− t)W 2

H(µ, µ0) + tW 2
H(µ, µ1)− t(1− t)W 2

H(µ0, µ1).

Proof. We have

W 2
H(µ, µt) ≤

∫
E×E

|x− y|2H d(π1 × π2→3
t )#Σ

=
∫
E3
|(1− t)(x− y) + t(x− z)|2H dΣ

= (1− t)
∫
E3
|x− y|2H dΣ + t

∫
E3
|x− z|2H dΣ

− t(1− t)
∫
E3
|y − z|2H dΣ

≤ (1− t)W 2
H(µ, µ0) + tW 2

H(µ, µ1)− t(1− t)W 2
H(µ0, µ1).

�

The following result is proved in Hilbert spaces in [4, Lemma 7.2.1] and
the proof remains valid in our setting. For the convenience of the reader we
provide the details. The result will be useful in the proof of Theorem 8.11.

Lemma 8.8. (i) Let µ0, µ1 ∈ P(E) with WH(µ0, µ1) < ∞ and take Σ ∈
Γo(µ0, µ1). Then µt := (π1→2

t )#Σ satisfies

WH(µs, µt) = |t− s|, s, t ∈ [0, 1].

(ii) Let (µt)t∈[0,1] ⊆P(E) be such that

WH(µs, µt) = |t− s|WH(µ0, µ1) <∞

for every s, t ∈ [0, 1]. For each t ∈ (0, 1) there exists an optimal plan
Σ ∈ Γo(µ0, µ1) and Borel maps s0t , s

1
t : E → E such that

Γo(µ0, µt) = {(π1,1→2
t )#Σ} = {(s0t × IE)#µt}, and

Γo(µt, µ1) = {(π1→2,2
t )#Σ} = {(IE × s1t )#µt}.

Proof. (i): Note that

W 2
H(µs, µt) ≤

∫
E×E

|x− y|2H d(π1→2
s × π1→2

t )#Σ

= |t− s|2
∫
E×E

|x− y|2H dΣ = |t− s|2W 2
H(µ0, µ1).
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Since this inequality holds for every s, t ∈ [0, 1], the triangle inequality implies
that the inequality above is in fact an equality, which gives the desired result.

(ii): Fix 0 < t < 1. It is convenient to regard µ0, µt, µ1 as measures on
distinct copies E1, E2, E3 of E. Take Σ0 ∈ Γo(µ0, µt) and Σ1 ∈ Γo(µt, µ1),
Using disintegration we find ν0

x2
∈P(E1) and ν1

x2
∈P(E3) satisfying

Σ0 :=
∫
E2

ν0
x2
dµt(x2), Σ1 :=

∫
E2

ν1
x2
dµt(x2).

Consider the probability measure Ξ ∈P(E1 × E2 × E3) defined by

Ξ :=
∫
E2

ν0
x2
⊗ ν1

x2
dµt(x2).

Since π1,2
# Ξ ∈ Γo(µ0, µt) and π2,3

# Ξ ∈ Γo(µt, µ1) we obtain

WH(µ0, µ1) ≤ ‖π1 − π3‖L2(Ξ;H)

≤ ‖π1 − π2‖L2(Ξ;H) + ‖π2 − π3‖L2(Ξ;H)

= WH(µ0, µt) +WH(µt, µ1)
= WH(µ0, µ1),

hence all inequalities are actually equalities. In particular, we find that Σ :=
π1,3

# Ξ ∈ Γo(µ0, µ1), and there exists α > 0 such that π1 − π2 = α(π1 − π3),
Ξ-a.e. Therefore

‖π1 − π2‖L2(Ξ;H) = WH(µ0, µt) = tWH(µ0, µ1)

= t‖π1 − π3‖L2(Ξ;H) =
t

α
‖π1 − π2‖L2(Ξ;H),

hence α = t and π2 = (1− t)π1 + tπ3, Ξ-a.e., which implies that

Σ0 = π1,2
# Ξ = (π1,1→2

t )#Σ and Σ1 = π2,3
# Ξ = (π1→2,2

t )#Σ.

This proves one part of the lemma.
To obtain the other part, we write

z0(x2) :=
∫
E1

x1dν
0
x2

(x1), z1(x2) :=
∫
E3

x3dν
1
x2

(x3).

Since π1 = π2−tπ3

1−t and π3 = π2−(1−t)π1

t , Ξ-a.e., we have

z0(x2) =
x2 − tx3

1− t
, Σ1-a.e., z1(x2) =

x2 − (1− t)x1

t
, Σ0-a.e.

Therefore, we have Ξ-a.e.,

x3 = s1t (x2) :=
x2 − (1− t)z0(x2)

t
, x1 = s0t (x2) :=

x2 − tz1(x2)
1− t

,
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which implies that Σ1 := (IE × s1t )#µt and Σ0 = (s0t × IE)#µt.
Note that s1t depends (through z0) on Σ0, but not on Σ1. This implies

that Γo(µt, µ1) contains only one element. Since the same argument works for
Γo(µ0, µt), the proof is complete. �

8.3 Subdifferentials of convex functionals

In this section we define subdifferentials of functionals and study some of
their properties under suitable convexity assumptions. First we introduce some
notation.

For µ, ν ∈P(E) and Σ ∈P(E × E) with π1
#Σ = µ we define

Γo(Σ, ν) := {Ξ ∈P(E3) : π1,2
# Ξ = Σ, π1,3

# Ξ ∈ Γo(µ, ν)}.

For 1 ≤ p <∞, i = 1, . . . , n, and Ξ ∈P(En), we set

|Ξ|i,p :=
(∫

En
|xi|pH dΞ

)1/p

.

For Ξ ∈ Γ (µ1, µ2, µ3) and i, j ∈ {1, 2, 3} we write

WΞ(µi, µj) :=
(∫

E3
|xi − xj |2H dΞ

)1/2

.

Following [4] and [59] we introduce the subdifferential associated with a
functional on the Wasserstein space. The definition strongly resembles the
corresponding definition for functionals on Hilbert spaces [18].

Definition 8.9. Let φ : P(E) → R ∪ {∞} be proper and lsc. Let µ ∈ D(φ)
and Σ ∈P(E × E) be such that π1

#Σ = µ and |Σ|2,2 <∞.

(1) We say that Σ is contained in the subdifferential of φ at µ, and write
Σ ∈ ∂φ(µ), if

φ(ν)− φ(µ) ≥ inf
Ξ∈Γo(Σ,ν)

∫
E3

[x2, x3 − x1]H dΞ + o(WH(µ, ν))

as WH(µ, ν)→ 0.
(2) We say that Σ is contained in the strong subdifferential of φ at µ, and

write Σ ∈ ∂sφ(µ), if for any Ξ ∈ Γ (Σ, ν),

φ(ν)− φ(µ) ≥
∫
E3

[x2, x3 − x1]H dΞ + o(WΞ(µ, ν))

as WΞ(µ, ν)→ 0.



8.3 Subdifferentials of convex functionals 173

Remark 8.10. Let us be more explicit and write for Ξ ∈ Γ (Σ, ν),

I(Ξ) :=
∫
E3

[x2, x3 − x1]H dΞ.

With this notation, the assertion Σ ∈ ∂φ(µ) means that

∀ ν ∈PH,µ(E) ∃Ξ ∈ Γo(Σ, ν) ∃Ψ(Ξ) ∈ R :

φ(ν)− φ(µ) ≥ I(Ξ) + Ψ(Ξ) and lim
WΞ(µ,ν)→0

Ψ(Ξ)
WΞ(µ, ν)

= 0.

Similarly, Σ ∈ ∂sφ(µ) means that

∀ ν ∈PH,µ(E) ∀Ξ ∈ Γ (Σ, ν) ∃Ψ(Ξ) ∈ R :

φ(ν)− φ(µ) ≥ I(Ξ) + Ψ(Ξ) and lim
WΞ(µ,ν)→0

Ψ(Ξ)
WΞ(µ, ν)

= 0.

From this description it is clear that the following inclusion holds:

∂sφ(µ) ⊆ ∂φ(µ).

We will use the notation

D(∂φ) := {µ ∈ D(φ) : ∂φ(µ) 6= ∅},
D(∂sφ) := {µ ∈ D(φ) : ∂sφ(µ) 6= ∅}.

The next theorem provides a useful description of the subdifferential for
λ-convex functionals. We refer to [4, Theorem 10.3.6] and [150, Theorem 3.8]
for the corresponding results in the Hilbert and Wiener space setting.

Theorem 8.11. Let φ : P(E) → R ∪ {∞} be proper, lsc, and λ-convex for
some λ ∈ R. Let µ ∈ D(φ) and let Σ ∈ P(E × E) satisfy π1

#Σ = µ and
|Σ|2,2 < ∞. Then Σ ∈ ∂φ(µ) if and only if for every ν ∈ PH,µ(E) there
exists Ξ ∈ Γo(Σ, ν) such that∫

E3
[x2, x3 − x1]H dΞ +

λ

2
W 2
H(µ, ν) + φ(µ) ≤ φ(ν). (8.7)

Proof. Clearly, (8.7) implies that Σ ∈ ∂φ(µ).
Conversely, assume that Σ ∈ ∂φ(µ). Let ν ∈ D(φ) and let (µt)t∈[0,1] ⊆

P(E) such that µ0 = µ, µ1 = ν, and

WH(µs, µt) = |t− s|WH(µ, ν),

φ(µt) ≤ (1− t)φ(µ) + tφ(ν)− λ

2
t(1− t)W 2

H(µ, ν).

Since Σ ∈ ∂φ(µ) there exists Ξ̂t ∈ Γo(Σ,µt) satisfying
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φ(µt)− φ(µ) ≥
∫
E3

[x2, x3 − x1]H dΞ̂t + o(WH(µ, µt))

= t

∫
E3

[x2, x3 − x1]H dΞt + o(t),
(8.8)

where Ξt := (π1 × π2 × π3−(1−t)π1

t )#Ξ̂t, or equivalently Ξ̂t := (π1,2,1→3
t )#Ξt.

We claim that Ξt ∈ Γo(Σ, ν). Indeed, by Lemma 8.8 we have π1,3
# Ξ̂t =

(π1,1→2
t )#Υ for some Υ ∈ Γo(µ, ν). Therefore

π3
#Ξt =

(π3 − (1− t)π1

t

)
#
Ξ̂t = π2

#Υ = ν.

Since π1,2
# Ξt = π1,2

# Ξ̂t = Σ, it follows that Ξt ∈ Γ (Σ, ν). The optimality
follows from∫

E3
|x1 − x3|2H dΞt =

1
t2

∫
E3
|x1 − x3|2H dΞ̂t =

1
t2
W 2
H(µ, µt) = W 2

H(µ, ν).

This proves the claim.
Combining the λ-convexity of φ with (8.8),

φ(ν)− φ(µ) ≥
φ(µt)− φ(µ) + λ

2 t(1− t)W
2
H(µ, ν)

t

≥
∫
E3

[x2, x3 − x1]H dΞt + o(1) +
λ

2
(1− t)W 2

H(µ, ν).

Therefore, to complete the proof, it suffices to find Ξ ∈ Γo(Σ, ν) and a van-
ishing sequence tn ↓ 0 for which

lim
n→∞

∫
E3

[x2, x3 − x1]H dΞtn =
∫
E3

[x2, x3 − x1]H dΞ.

Since π1,2
# Ξt = Σ and π3

#Ξt = ν, the collection (Ξt)t∈(0,1) is tight. Let tn ↓ 0
such that Ξtn converges weakly to Ξ ∈P(E3). Since Ξt ∈ Γo(Σ, ν) we clearly
have Ξ ∈ Γ (Σ, ν). Moreover, by Lemma 6.2,∫

E3
|x1 − x3|2H dΞ ≤ lim

n→∞

∫
E3
|x1 − x3|2H dΞtn = W 2

H(µ, ν),

which implies that Ξ ∈ Γo(Σ, ν).
Define ∆t := (π2 × (π3 − π1))#Ξt and observe that ∆tn ⇀ ∆ := (π2 ×

(π3 − π1))#Ξ. Since π1
#∆t = π2

#Σ, we have∫
E×E

|x1|2H d∆t =
∫
E×E

|x2|2H dΣ = |Σ|22,2 <∞.

Moreover,
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E×E

|x2|2H d∆t =
∫
E3
|x3 − x1|2H dΞt = W 2

H(µ, ν).

Since Ξ ∈ Γo(Σ, ν) we also have∫
E×E

|x2|2H d∆ =
∫
E3
|x3 − x1|2H dΞ = W 2

H(µ, ν).

Therefore, we can apply Proposition 6.14 to obtain

lim
n→∞

∫
E3

[x2, x3 − x1]H dΞtn = lim
n→∞

∫
E×E

[x1, x2]H d∆tn

=
∫
E×E

[x1, x2]H d∆ =
∫
E3

[x2, x3 − x1]H dΞ,

which completes the proof. �

We proceed with a variation of [4, Lemma 10.1.2], which is based on an
argument first used by Otto. This result has also been useful in the inves-
tigation of invariance of closed convex sets under Wasserstein gradient flows
[104].

Proposition 8.12. Let φ : P(E)→ R∪{∞} be proper, lsc, and λ-convex for
some λ ∈ R. Let µ ∈ D(φ) and ν ∈ D(φ), and let Σ̃h ∈ Γo(Jhµ, µ) for some
h ∈ Iλ. Take Ξ̃h ∈ Γ (Σ̃h, ν), and consider the rescaled plans

Σh := (π1 × π2 − π1

h
)#Σ̃h, Ξh := (π1 × π2 − π1

h
× π3)#Ξ̃h.

Then

φ(ν)− φ(Jhµ) ≥
∫
E3

[x2, x3 − x1] dΞh −
1

2h
W 2
Ξh

(Jhµ, ν).

In particular,

Σh ∈ ∂sφ(Jhµ).

Proof. The minimizing property of Jhµ combined with the identity 1
2 |a|

2
H −

1
2 |b|

2
H = [a, a− b]H − 1

2 |a− b|
2
H implies that

φ(ν)− φ(Jhµ) ≥ 1
2h
W 2
H(Jhµ, µ)− 1

2h
W 2
H(ν, µ)

≥ 1
2h

∫
E3
|x2 − x1|2H dΞ̃h −

1
2h

∫
E3
|x3 − x2|2H dΞ̃h

=
∫
E3

[
x2 − x1

h
, x3 − x1]H dΞ̃h −

1
2h

∫
E3
|x3 − x1|2H dΞ̃h

=
∫
E3

[x2, x3 − x1]H dΞh −
1

2h

∫
E3
|x3 − x1|2H dΞh

=
∫
E3

[x2, x3 − x1]H dΞh −
1

2h
W 2
Ξh

(Jhµ, ν).

The last statement is an immediate consequence. �
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8.4 Regularity and interpolation of subdifferentials

The following result expresses a regularity property of λ-convex functionals
(see also [4, Lemma 10.3.8] and [150, Theorem 3.11]).

Proposition 8.13. Let φ : P(E) → R ∪ {∞} be proper, lsc, and λ-convex
for some λ ∈ R. Let µ ∈ D(φ) and Σ ∈ P(E × E). If µn ∈ D(∂φ) and
Σn ∈ ∂φ(µn) satisfy

lim
n→∞

WH(µn, µ) = 0, Σn ⇀ Σ, sup
n≥1
|Σn|2,2 <∞,

then µ ∈ D(∂φ) and Σ ∈ ∂φ(µ).

Proof. Let ν ∈ D(φ) be such that WH(µ, ν) < ∞. We may assume that
WH(µn, ν) < ∞ for all n ≥ 1. By Theorem 8.11 there exists Ξn ∈ Γo(Σn, ν)
such that

φ(ν)− φ(µn) ≥
∫
E3

[x2, x3 − x1]H dΞn +
λ

2
W 2
H(µn, ν). (8.9)

Since φ is lsc, there exists a subsequence (µnk)k≥1 for which

lim
k→∞

φ(µnk) = lim
n→∞

φ(µn) ≥ φ(µ).

Since µnk ⇀ µ by Proposition 6.10 and Σnk ⇀ Σ, the collection (Ξn)n≥1

is tight. Let (Ξnk)k≥1 be a subsequence converging weakly to Ξ ∈ Γ (Σ, ν).
Note that Ξ ∈ Γo(Σ, ν), since Lemma 6.2 implies that∫

E3
|x1 − x3|2H dΞ ≤ lim

k→∞

∫
E3
|x1 − x3|2H dΞnk

= lim
k→∞

W 2
H(µnk , ν) = W 2

H(µ, ν).

Using (8.9) we obtain

φ(ν)− φ(µ) ≥ lim
k→∞

φ(ν)− φ(µnk)

≥ lim
k→∞

∫
E3

[x2, x3 − x1]H dΞnk +
λ

2
W 2
H(µnk , ν)

= lim
k→∞

∫
E×E

[x1, x2]H d∆nk +
λ

2
W 2
H(µ, ν),

(8.10)

where ∆n := (π2×(π3−π1))#Ξn. Note that ∆nk ⇀ ∆ := (π2×(π3−π1))#Ξ.
Since π1

#∆nk = π2
#Ξnk = π2

#Σnk , we have

sup
k≥1

∫
E×E

|x1|2H d∆nk = sup
k≥1
|Σnk |22,2 <∞.
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Moreover, since WH(µnk , µ)→ 0 and Ξnk ⇀ Ξ, Proposition 6.11 implies that

lim
M→∞

lim
k→∞

∫
{|x2|H≥M}

|x2|2H d∆nk

= lim
M→∞

lim
k→∞

∫
{|x3−x1|H≥M}

|x3 − x1|2H dΞnk = 0.

Combining this with the identity

lim
k→∞

∫
E×E

|x2|2H d∆nk = lim
k→∞

W 2
H(µnk , ν)→W 2

H(µ, ν) =
∫
E×E

|x2|2H d∆,

we may apply Proposition 6.14 to obtain

lim
k→∞

∫
E×E

[x1, x2]H d∆nk =
∫
E×E

[x1, x2]H d∆ =
∫
E3

[x2, x3 − x1]H dΞ.

It follows from (8.10) that

φ(ν)− φ(µ) ≥
∫
E3

[x2, x3 − x1]H dΞ +
λ

2
W 2
H(µ, ν),

which together with Theorem 8.11 implies the desired result. �

In the next lemma, taken from [4, Proposition 7.3.1], we write Ei to denote
identical copies of E.

Lemma 8.14. Let t ∈ (0, 1), and let Ξl, Ξr ∈P(E3) satisfy the compatibility
condition (π1,2→3

t )#Ξl = π1,2
# Ξr. Then there exists Υ ∈P(E4) such that

π1,2,3
# Υ = Ξl, (π1,2→3,4

t )#Υ = Ξr.

Proof. Set Ξ̂l := (π1,2,2→3
t )#Ξl. A measure Υ ∈P(E4) has the desired prop-

erties if and only if Υ̂ := (π1,2,2→3,4
t )#Υ satisfies

π1,2,3
# Υ̂ = Ξ̂l, π1,3,4

# Υ̂ = Ξr.

This can easily be arranged. Indeed, set Σ := π1,3
# Ξ̂l = π1,2

# Ξr and use
disintegration to write

Ξ̂l =
∫
E1×E3

µx1,x3 dΣ(x1, x3), Ξr =
∫
E1×E2

νx1,x2 dΣ(x1, x2),

for suitable µx1,x3 ∈P(E2) and νx1,x2 ∈P(E3). Then

Υ̂ :=
∫
E1×E3

µx1,x3 ⊗ νx1,x3 dΣ(x1, x3),

has the required properties. �
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It turns out that strong subdifferentials enjoy good interpolation proper-
ties. The next result is proved in Hilbert spaces in [4, Lemma 10.3.12].

Proposition 8.15 (Interpolation of strong subdifferentials). Let φ :
P(E) → R ∪ {∞} be proper and lsc. Let µ ∈ D(∂sφ) and take Σ2, Σ3 ∈
∂sφ(µ). Let Ξ ∈ P(E3) satisfy π1,2

# Ξ = Σ2 and π1,3
# Ξ = Σ3. For t ∈ [0, 1]

we have

Σt := (π1,2→3
t )#Ξ ∈ ∂sφ(µ).

Proof. Let ν ∈ D(φ) and Ξt ∈ Γ (Σt, ν). By Lemma 8.14 there exists Υ ∈
P(E4) such that

π1,2,3
# Υ = Ξ, (π1,2→3,4

t )#Υ = Ξt.

Observe that

π1,2,4
# Υ ∈ Γ (Σ2, ν), π1,3,4

# Υ ∈ Γ (Σ3, ν).

Since Σ2, Σ3 ∈ ∂φs(µ),

φ(ν)− φ(µ) ≥
∫
E4

[x2, x4 − x1]H dΥ + o(WΥ (µ, ν)),

φ(ν)− φ(µ) ≥
∫
E4

[x3, x4 − x1]H dΥ + o(WΥ (µ, ν)).

Taking weighted averages and using that

W 2
Υ (µ, ν) =

∫
E4
|x1 − x4|2H dΥ =

∫
E3
|x1 − x3|2H dΞt = W 2

Ξt(µ, ν),

we obtain

φ(ν)− φ(µ) ≥
∫
E4

[(1− t)x2 + tx3, x4 − x1]H dΥ + o(WΞt(µ, ν))

≥
∫
E3

[x2, x3 − x1]H dΞt + o(WΞt(µ, ν)),

which means that Ξt ∈ ∂sφ(µ). �

8.5 Minimal selection

In this section we shall show that for proper lsc functionals which are λ-
convex along generalised geodesics, the domain of the slope and the domain of
the subdifferential coincide. Moreover, we shall prove that the subdifferential
contains a unique element of minimal length if the subdifferential is non-
empty. This element will play a distinguished role in the theory of gradient
flows in Chapter 9.

In the proof of Theorem 8.17 we will use the following lemma which is
taken from [4].
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Lemma 8.16. Let X be a separable metric space, and let rn : X → X be
a sequence of Borel maps which converge uniformly on compact sets to a
continuous map r. If (µn)n≥1 ⊆ P(E) is tight and weakly converging to µ ∈
P(E), then (rn)#µn converges weakly to r#µ.

Proof. See [4, Lemma 5.2.1]. �

Theorem 8.17. Assume (H). Let φ : P(E) → R ∪ {∞} be a proper lsc
functional satisfying (A1), which is λ-convex along generalised geodesics for
some λ ∈ R. Then

D(|∂φ|) = D(∂φ),

and for any µ ∈ D(|∂φ|) we have

|∂φ|(µ) = min{|Σ|2,2 : Σ ∈ ∂φ(µ)}.

The existence of a minimizer is part of the assertion.

Proof. Suppose first that µ ∈ D(∂φ) and Σ ∈ ∂φ(µ). For every ν ∈ D(φ) we
can find Ξ ∈ Γo(Σ, ν) such that

φ(µ)− φ(ν) ≤
∫
E3

[x2, x1 − x3]H dΞ + o(WH(µ, ν))

≤
(∫

E3
|x2|2H dΞ

)1/2(∫
E3
|x1 − x3|2H dΞ

)1/2

+ o(WH(µ, ν))

= |Σ|2,2WH(µ, ν) + o(WH(µ, ν)),

from which we infer that µ ∈ D(|∂φ|) and

|∂φ|(µ) = lim
WH(µ,ν)→0

(φ(µ)− φ(ν))+

WH(µ, ν)
≤ |Σ|2,2. (8.11)

This proves that D(|∂φ|) ⊇ D(∂φ) and

|∂φ|(µ) ≤ inf
{
|Σ|2,2 : Σ ∈ ∂φ(µ)

}
. (8.12)

Conversely, (8.6) implies that for µ ∈ D(|∂φ|),

|∂φ|2(µ) = lim
h↓0

W 2
H(Jhµ, µ)
h2

= 2 lim
h↓0

φ(µ)− φh(µ)
h

. (8.13)

On the other hand, for Σ̃h ∈ Γo(Jhµ, µ) and Σh := (π1× π2−π1

h )#Σ̃h, we have

|Σh|22,2 =
∫
E×E

|x2|2H dΣh =
1
h2

∫
E×E

|x1 − x2|2H dΣ̃h =
W 2
H(Jhµ, µ)
h2

,

(8.14)

for each h ∈ Iλ. Moreover, Proposition 8.12 implies that Σh ∈ ∂sφ(Jhµ). Our
goal is to produce an element in ∂φ(µ) by appealing to Proposition 8.13. We
observe that
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– WH(Jhµ, µ)→ 0 as h ↓ 0 by (8.2).
– (Σhn)n≥1 is tight for some sequence hn ↓ 0. Indeed, to prove this, it

suffices to show the tightness of both marginals. Since π1
#Σh = Jhµ and

WH(Jhµ, µ)→ 0 as h ↓ 0 by (8.13), the tightness of (π1
#Σhn)n≥1 follows

from Proposition 6.10. Using (8.13) and (8.14) we find

sup
n≥1
|Σhn |22,2 = sup

n≥1

∫
E

|x|2H dπ2
#Σhn = sup

n≥1

W 2
H(Jhnµ, µ)

h2
n

<∞,

so that Proposition 6.12 implies that (π2
#Σhn)n≥1 is tight. By passing

to a subsequence we may assume that Σhn converges weakly to some
Σ̄ ∈P(E × E).

Proposition 8.13 implies that µ ∈ D(∂φ) and Σ̄ ∈ ∂φ(µ). This proves that
D(|∂φ|) ⊆ D(∂φ).

To prove the final assertion, we note that by Lemma 6.2 and (8.13),

|Σ̄|22,2 ≤ lim
n→∞

|Σhn |22,2 = lim
n→∞

W 2
H(Jhnµ, µ)

h2
n

= |∂φ|2(µ).

Combining this with (8.12) yields the desired result. �

Using the method devised in [4, Theorem 10.3.11] we show that the mini-
mizer obtained in Theorem 8.17 is unique.

Theorem 8.18. Assume (H). Let φ : P(E) → R ∪ {∞} be a proper lsc
functional satisfying (A1), which is λ-convex along generalised geodesics for
some λ ∈ R. Let µ ∈ D(∂φ) and suppose that Σ2, Σ3 ∈ ∂φ(µ) satisfy

|Σ2|2,2 = |Σ3|2,2 = |∂φ|(µ).

Then Σ2 = Σ3.

In this situation, we will denote by ∂◦φ(µ) the unique element in ∂φ(µ) sat-
isfying

|∂◦φ(µ)|2,2 = |∂φ|(µ),

which exists in view of Theorem 8.17

Proof. We proceed in several steps.
Step 1: We shall show that, for i = 2, 3, there exists a sequence hn ↓ 0

and strong subdifferentials Σi
hn
∈ ∂sφ(Jhnµ) such that

Σi
hn ⇀ Σi, |Σi

hn |2,2 → |Σ
i|2,2 = |∂φ|(µ).

Suppose that Σ ∈ ∂φ(µ) and |Σ|2,2 = |∂φ|. For each h ∈ Iλ there exists
Ξ̂h ∈ Γo(Σ, Jhµ) such that
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φ(Jhµ)− φ(µ) ≥
∫
E3

[x2, x3 − x1]H dΞ̂h + o(WH(Jhµ, µ)). (8.15)

We define Ξh := (π1×π2× π1−π3

h )#Ξ̂h and claim that (Ξh)h∈(0,δ) is tight for
some δ > 0. Indeed,∫
E

|x|2H d(π3
#Ξh) =

∫
E3

|x3|2H dΞh =
1
h2

∫
E3

|x1 − x3|2H dΞ̂h =
1
h2
W 2
H(Jhµ, µ).

Since

lim
h→0

1
h2
W 2
H(µ, Jhµ) = |∂φ|2(µ)

by (8.6), the tightness of (π3
#Ξh)h∈(0,δ) for some δ > 0 follows from Proposi-

tion 6.12. Since π1,2
# Ξ = Σ, we conclude that (Ξh)h∈(0,δ) is tight.

Consider a sequence h′n ↓ 0 and let hn ↓ 0 be a subsequence such that Ξhn
converges weakly to some limit point Ξ. Lemma 6.2 implies that∫

E3
|x3|2H dΞ ≤ lim

n→∞

∫
E3
|x3|2H dΞhn = |∂φ|2(µ). (8.16)

On the other hand, since π1,2
# Ξ = Σ,∫

E3
|x2|2H dΞ = |Σ|22,2 = |∂φ|2(µ). (8.17)

Using (8.6) and (8.15) we arrive at

|∂φ|2(µ) = lim
n→∞

φ(µ)− φ(Jhnµ)
hn

≤ lim
n→∞

1
hn

∫
E3

[x2, x1 − x3]H dΞ̂hn +
o(WH(Jhnµ, µ))

hn

= lim
n→∞

∫
E3

[x2, x3]H dΞhn

=
∫
E3

[x2, x3]H dΞ.

(8.18)

The last step in this computation is justified by Proposition 6.14, which can
be applied since π1,2

# Ξh = Σ, hence

lim
R→∞

lim
h↓0

∫
{|x2|H≥R}

|x2|2H dΞh = lim
R→∞

∫
{|x2|H≥R}

|x2|2H dΣ = 0,

and, for δ > 0 small enough,

sup
h∈(0,δ)

∫
E3
|x3|2H dΞh = sup

h∈(0,δ)

1
h2
W 2
H(Jhµ, µ) <∞.
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Combining (8.16), (8.17) and (8.18), we arrive at

1
2

∫
E3
|x2|2H + |x3|2H dΞ ≤ |∂φ|2(µ) ≤

∫
E3

[x2, x3]H dΞ,

from which we infer that Ξ({x2 = x3}) = 1. Combined with the fact that
π1,2

# Ξ = Σ, we conclude that Ξ = (π1 × π2 × π2)#Σ. This implies that

π1,3
# Ξhn ⇀ π1,3

# Ξ = π1,2
# Ξ = Σ.

On the other hand, an application of Lemma 8.16 with rn := (π1−hnπ3)×π3

gives

Σhn :=
(
(π1 − hnπ3)× π3

)
#
Ξhn ⇀ π1,3

# Ξ = Σ.

Since π3,1
# Ξ̂hn ∈ Γo(Jhnµ, µ), Proposition 8.12 implies that

Σhn =
(
π3 × π1 − π3

hn

)
#
Ξ̂hn =

(
π1 × π2 − π1

hn

)
#

(
π3,1

# Ξ̂hn
)
∈ ∂sφ(Jhnµ).

It follows from (8.6) that

lim
n→∞

∫
E3
|x3|2H dΞhn = lim

n→∞

1
h2
n

W 2
H(Jhnµ, µ) = |∂φ|2(µ),

which together with (8.17) yields that

|Σhn |22,2 =
∫
E3
|x3|2H dΞhn → |Σ|22,2,

hence Σ has the desired properties. The proof of Step 1 is completed by first
applying this procedure to Σ := Σ2 and then to Σ := Σ3.

Step 2: For i = 2, 3, let (Σi
hn

)n≥1 be as in Step 1, and take Υhn ∈P(E3)
with π1,i

# Υhn = Σi
hn
. The tightness of (Σi

hn
)n≥1 implies that (Υhn)n≥1 is tight

as well. Passing to a subsequence we may assume that Υhn ⇀ Υ. We will show
that

Σ̂ := (π1,2→3
1/2 )#Υ ∈ ∂φ(µ).

To show this, we define Σ̂hn := (π1,2→3
1/2 )#Υhn and check the conditions

from Proposition 8.13:

– Proposition 8.2(ii) asserts that Jhnµ→ µ in WH -distance.
– Proposition 8.15 implies that Σ̂hn ∈ ∂sφ(Jhnµ).
– Since Υhn ⇀ Υ, we have Σ̂hn ⇀ Σ̂.
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– Finally, for each n ≥ 1 we have, using the triangle inequality in
L2(Υhn ;H) and the fact that π1,i

# Υhn = Σi
hn

for i = 2, 3,

|Σ̂hn |2,2 =
(∫

E×E
|x2|2H dΣ̂hn

)1/2

=
(∫

E3

∣∣1
2
x2 +

1
2
x3

∣∣2
H
dΥhn

)1/2

≤ 1
2

(∫
E3
|x2|2H dΥhn

)1/2

+
1
2

(∫
E3
|x3|2H dΥhn

)1/2

=
1
2

(∫
E×E

|x2|2H dΣ2
hn

)1/2

+
1
2

(∫
E×E

|x2|2H dΣ3
hn

)1/2

=
1
2
|Σ2
hn |2,2 +

1
2
|Σ3
hn |2,2.

Taking Step 1 into account, we infer that supn≥1 |Σ̂hn |2,2 <∞.

Now we can apply Proposition 8.13 to conclude that µ ∈ D(∂φ) and Σ̂ ∈
∂φ(µ).

Step 3: We complete the proof. Using the fact that Σ̂ = (π1,2→3
1/2 )#Υ and

the parallelogram identity in L2(Υ ;H), we obtain

|Σ̂|22,2 = ‖1
2
π2 +

1
2
π3‖2L2(Υ ;H)

=
1
2
‖π2‖2L2(Υ ;H) +

1
2
‖π3‖2L2(Υ ;H) −

1
4
‖π2 − π3‖2L2(Υ ;H)

= |∂φ|2(µ)− 1
4
‖π2 − π3‖2L2(Υ ;H).

Theorem 8.17 enforces that π2 = π3 Υ -a.e., hence Σ2 = π1,2
# Υ = π1,3

# Υ = Σ3.
�
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Gradient Flows

In this chapter we will consider gradient flows in the space P(E) endowed with
the Wasserstein metric WH . Gradient flows can be defined in purely metric
terms, by means of an evolution variational inequality. Alternatively, using
the velocity fields and subdifferentials considered in the preceding chapters,
a more differential geometric formulation can be given in the Wasserstein
space. In this chapter we will show that both approaches are equivalent under
appropriate convexity conditions on the functional. Hilbert space and Wiener
space versions of such results can be found in [4] and [150] respectively.

First we collect some fundamental facts from the theory of gradient flows
in metric spaces developed in [4].

9.1 Metric properties

Let (X, d) be a complete metric space.
The following definition of a gradient flow is based on an evolution varia-

tional inequality.

Definition 9.1. Let φ : X → R ∪ {∞} be a proper, lsc functional. A map
u ∈ C([0,∞);X)∩ACloc((0,∞);X) is said to be a gradient flow for φ if there
exists λ ∈ R such that for any y ∈ D(φ),

1
2
∂td

2(u(t), y) +
λ

2
d2(u(t), y) ≤ φ(y)− φ(u(t)) (9.1)

a.e. on (0,∞).

The following result is one of the main results in the general theory of
gradient flows in metric spaces from [4]. This theory generalises the Hilbert
space results, which can be found in [18].

Let J ⊆ R be an open interval. For a function u : J → X and t ∈ J we let
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|u′+|(t) := lim
h↓0

d(u(t+ h), u(t))
h

denote the right metric derivative, provided this limit exists.

Theorem 9.2. Let φ : X → R∪{∞} be a proper lsc functional satisfying the
assumptions (A1) and (A2) from Section 8.1. For each u0 ∈ D(φ) there exists
a unique gradient flow

u(·) := S(·)u0 ∈ C([0,∞);X) ∩ACloc((0,∞);X)

(in the sense of Definition 9.1 with λ as in (A2)) satisfying u(0) = u0. More-
over, the following properties hold:

(i) (Exponential formula) For t > 0 we have

u(t) = lim
n→∞

Jnt/nu0.

(ii) (Regularising effect) For t > 0 we have u(t) ∈ D(|∂φ|) ⊆ D(φ) and

φ(u(t)) ≤ φ(σ) +
1
2t
d2(u0, σ), σ ∈ D(φ),

|∂φ|2(u(t)) ≤ |∂φ|2(σ) +
1
t2
d2(u0, σ), σ ∈ D(|∂φ|).

(iii) (λ-contractive semigroup) For s, t ≥ 0 and û0 ∈ D(φ) we have

S(s+ t)u0 = S(s)S(t)u0, d(S(t)u0, S(t)û0) ≤ e−λtd(u0, û0).

(iv) If u0 ∈ D(φ) and t > 0 we have

−∂+
t φ(u(t)) = |∂φ|2(u(t)) = |u′+|2(t) = |∂φ|(u(t)) |u′+|(t).

In the first term of (iv), ∂+
t denotes the right derivative.

Proof. See [4, Theorems 2.4.15 & 4.0.4]. �

9.2 Differential properties

• Throughout this section we assume that (H) holds.

The very definition of a gradient flow (9.1) suggests that it might be useful
to calculate the derivative of the squared Wasserstein distance along absolutely
continuous paths:

Proposition 9.3. Let J ⊆ R be an interval, let (µt)t∈J ∈ AC2(J ; Pf (E))
with velocity field Z ∈ L2(Mµ;H) as defined in Theorem 7.2, and let ν ∈
PH,µs(E) for some s ∈ J. For a.e. t ∈ J and any Σ ∈ Γo(µt, ν) we have

1
2
∂tW

2
H(µt, ν) =

∫
E×E

[Zt(x), x− y]H dΣ(x, y).
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Proof. For any t ∈ J for which (7.9) holds, we have

∂tW
2
H(µt, ν) = lim

h→0

W 2
H((I + hZt)#µt, ν)−W 2

H(µt, ν)
h

,

and for any h ∈ R we find

W 2
H((I + hZt)#µt, ν)−W 2

H(µt, ν)

≤
∫
E×E

|x+ hZt(x)− y|2 − |x− y|2 dΣ(x, y)

=
∫
E×E

2h[Zt(x), x− y]H + h2|Zt(x)|2H dΣ(x, y).

Letting h ↓ 0, we arrive at

1
2
∂tW

2
H(µt, ν) ≤

∫
E×E

[Zt(x), x− y]H dΣ(x, y).

The reverse inequality follows by passing to the limit h ↑ 0. �

The next theorem gives a differential characterisation of gradient flows. In
its proof we need the following simple lemma.

Lemma 9.4. Let X,Y, Z be Polish spaces, let Ξ ∈ P(X × Y × Z), let µ ∈
P(X), and suppose that there exists a Borel mapping r : X → Y satisfying
π1,2

# Ξ = (IX × r)#µ. For every Borel measurable f : X × Y × Z → [0,∞] we
have ∫

X×Y×Z
f(x, y, z) dΞ =

∫
X×Y×Z

f(x, r(x), z) dΞ.

Proof. By the Disintegration Theorem 6.3 there exists a family of Borel prob-
ability measures (γx,y)(x,y)∈X×Y ⊆P(Z) such that

Ξ =
∫
X×Y

γx,y d(IX × r)#µ(x, y).

In particular,∫
X×Y×Z

f(x, y, z) dΞ =
∫

X×Y

∫
Z

f(x, y, z) dγx,y(z) d(IX × r)#µ(x, y)

=
∫
X

∫
Z

f(x, r(x), z) dγx,r(x)(z) dµ(x),

while on the other hand we have
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X×Y×Z

f(x, r(x), z) dΞ =
∫

X×Y

∫
Z

f(x, r(x), z) dγx,y(z) d(IX × r)#µ(x, y)

=
∫
X

∫
Z

f(x, r(x), z) dγx,r(x)(z) dµ(x).

This proves the result. �

The next result shows that the metric definition of a gradient flow is equiv-
alent to a differential inclusion. The second assertion should be interpreted as
a Wasserstein version of the differential inclusion

u′(t) + ∂φ(u(t)) 3 0,

which has been studied in Hilbert spaces in [18].

Theorem 9.5. Let φ : P(E) → R ∪ {∞} be proper, lsc, and λ-convex for
some λ ∈ R. Let (µt)t≥0 ∈ C([0,∞); Pf (E)) ∩ AC2

loc([0,∞); Pf (E)), and
let Z ∈ L2

loc(Mµ;H) be its velocity field as in Theorem 7.2. The following
assertions are equivalent:

(1) (µt)t≥0 is a gradient flow for φ in the sense of Definition 9.1;
(2) For a.e. t ≥ 0 the following differential inclusion holds:

(IE × (−Zt))#µt ∈ ∂φ(µt).

Here, the space L2
loc(Mµ;H) consists of all (equivalence classes of) Borel func-

tions Z : [0,∞) × E → H satisfying
∫
J

∫
E
|Zt(x)|2H dµt(x) dt < ∞ for all

compact subintervals J ⊆ [0,∞).

Proof. To show that (1) implies (2) we take ν ∈PH,µ0(E). By Definition 9.1
and Proposition 9.3 we obtain for a.e. t ≥ 0 and any Σt ∈ Γo(µt, ν),∫

E×E
[Zt(x1), x1 − x2]H dΣt +

λ

2
W 2
H(µt, ν) + φ(µt) ≤ φ(ν).

Put Ξt := (π1×(−Zt◦π1)×π2)#Σt and note that Ξt ∈ Γo((IE×(−Zt))#µt, ν).
Since the integral appearing above equals∫

E3
[x2, x3 − x1]H dΞt,

we obtain (2) by virtue of Theorem 8.11.
Conversely, it follows from (2) and Theorem 8.11 that for any ν ∈

PH,µ0(E) there exists Ξt ∈ Γo((IE × (−Zt))#µt, ν) such that∫
E3

[x2, x3 − x1]H dΞt +
λ

2
W 2
H(µt, ν) + φ(µt) ≤ φ(ν).
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By Lemma 9.4 the integral equals∫
E3

[Zt(x1), x1 − x3]H dΞt.

Since π1,3
# Ξt ∈ Γo(µt, ν), the result follows from Proposition 9.3. �

The following result is a variation of (11.2.7) – (11.2.9) in [4, Theorem
11.2.1].

Theorem 9.6. Let φ : P(E)→ R∪{∞} be a proper, lsc functional satisfying
(A1), which is λ-convex along generalised geodesics for some λ ∈ R. Let µ0 ∈
D(φ), and let (µt)t≥0 be the corresponding gradient flow. For t, h > 0 there
exists Σ̂t,h ∈ Γo(µt, µt+h) such that for any t > 0,

∂◦φ(µt) = lim
h↓0

(
π1 × π1 − π2

h

)
#
Σ̂t,h, (9.2)

where the convergence is understood with respect to WH×H . Moreover,

−∂+
t φ(µt) = |µ′+|2(t) = |∂φ|2(µt) = |∂◦φ(µt)|22,2. (9.3)

Proof. Let t > 0. The first two equalities in (9.3) follow from the general
metric theory of Theorem 9.2(iii), and the last identity has been proved in
Theorem 8.17.

Let us prove (9.2). From Theorem 8.17 and Theorem 9.2(ii) we know that
∂φ(µt) 6= ∅. Set Σt := ∂◦φ(µt). Since Σt ∈ ∂φ(µt), for any h > 0 there exists
Ξ̂t,h ∈ Γo(Σt, µt+h) such that

φ(µt+h)− φ(µt)
h

≥ 1
h

∫
E3

[x2, x3 − x1]H dΞ̂t,h +
o(WH(µt, µt+h))

h
.

= −
∫
E3

[x2, x3]H dΞt,h +
o(WH(µt, µt+h))

h
,

(9.4)

where Ξt,h := (π1 × π2 × π1−π3

h )#Ξ̂t,h. Since µt ∈ D(|∂φ|) by Theorem 9.2,
we have

lim
h↓0

WH(µt, µt+h)
h

≤ |µ′|(t) <∞.

Therefore we obtain, as h ↓ 0 in (9.4),

∂+
t φ(µt) ≥ lim

h↓0

(
−
∫
E3

[x2, x3]H dΞt,h

)
.

On the other hand, since π2
#Ξt,h = π2

#Σt for any h > 0, Theorem 9.2(iv)
implies that
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−∂+
t φ(µt) = |∂φ|2(µt) = |Σt|22,2 =

∫
E3
|x2|2H dΞt,h.

Applying Theorem 9.2(iv) once more,

−∂+
t φ(µt) = |µ′+|2(t) = lim

h↓0

W 2
H(µt, µt+h)

h2

= lim
h↓0

1
h2

∫
E3
|x3 − x1|2H dΞ̂t,h = lim

h↓0

∫
E3
|x3|2H dΞt,h.

Combining the latter three statements, we obtain

lim
h↓0

∫
E3
|x2 − x3|2H dΞt,h = lim

h↓0

∫
E3
|x2|2H dΞt,h

− 2
∫
E3

[x2, x3]H dΞt,h +
∫
E3
|x3|2H dΞt,h ≤ 0.

(9.5)

Set Σ̂t,h := π1,3
# Ξ̂t,h and note that Σ̂t,h ∈ Γo(µt, µt+h). Then

W 2
H×H

(
Σt,
(
π1 × π1 − π2

h

)
#
Σ̂t,h

)
≤
∫
E4
|(x1, x2)− (y1, y2)|2H×H d

(
π1,2,1 × π1 − π3

h

)
#
Ξ̂t,h

=
∫
E3

∣∣∣(x1, x2)−
(
x1,

x1 − x3

h

)∣∣∣2
H×H

dΞ̂t,h

=
∫
E3

∣∣∣x2 −
x1 − x3

h

∣∣∣2
H
dΞ̂t,h

=
∫
E3
|x2 − x3|2H dΞt,h,

and therefore (9.2) follows from (9.5). �

The next result shows, loosely speaking, that the velocity field along the
path of a gradient flow selects the element of minimal length in the subdiffer-
ential.

Corollary 9.7. Let φ : P(E)→ R∪{∞} be a proper, lsc functional satisfying
(A1), which is λ-convex along generalised geodesics for some λ ∈ R, and
assume that D(φ) ⊆ Pf (E). Let µ ∈ D(φ), let (µt)t≥0 be the corresponding
gradient flow with µ0 = µ, and let Z ∈ L2

loc(Mµ;H) be its velocity field. Then,
for a.e. t > 0,

(IE × (−Zt))#µt = ∂◦φ(µt).

Proof. Since µt ∈ D(φ) for any t > 0 by Theorem 9.2, this follows immediately
by combining Theorem 7.4 and Theorem 9.6. �
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Entropy and Fokker-Planck Equations

In this chapter we study a class of entropy functionals on the Wasserstein space
(P(E),WH). Under suitable assumptions on the reproducing kernel Hilbert
space, it will be shown that Gaussian entropy functionals are displacement
convex in the sense of McCann [118] and Ambrosio, Gigli, and Savaré [4].

This result will be applied to relative entropy functionals associated with
invariant measures of linear stochastic differential equations in Banach spaces.
We will prove that the associated Wasserstein gradient flows satisfy a Fokker-
Planck equation corresponding to the SDE, thereby establishing a connection
between Parts I and II of this thesis. The underlying Hilbert space in the
definition of the Wasserstein metric is the reproducing kernel Hilbert space of
the noise term in the SDE.

10.1 Entropy functionals

For ν ∈ P(E) we consider the relative entropy functional (also known as
Kullback-Leibler divergence)

Hν : P(E)→ [0,∞], Hν(µ) :=
{∫

E
ρ log ρ dν, µ� ν, µ = ρν

∞, otherwise.

The asserted nonnegativity of Hν(µ) follows from the observation that 1− t+
t log t ≥ 0 for t ≥ 0, together with the identity∫

E

ρ log ρ dν =
∫
E

1− ρ+ ρ log ρ dν.

We will use some continuity and contractivity properties of relative entropy
functionals, which have been proved in a Hilbert space setting in [4, Lemma
9.4.3] and [4, Lemma 9.4.5]. The proofs remains valid in our setting (see also
[166, Theorem 29.20] for related results).
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Lemma 10.1. Let (µn)n≥1 and (νn)n≥1 be sequences in P(E) converging
weakly to µ, ν ∈P(E) respectively. Then

Hν(µ) ≤ lim
n→∞

Hνn(µn).

Lemma 10.2. Let π : E → E be a Borel map. For all µ, ν ∈P(E) we have

Hπ#ν(π#µ) ≤ Hν(µ). (10.1)

10.2 Displacement convexity of Gaussian entropy

In this section we assume that

• γ is a Gaussian measure on E. Let H be its reproducing kernel Hilbert
space, let ι : H ↪→ E be the canonical embedding, and set Q := ιι∗.

In some parts of this section we will impose the following additional assump-
tion:

(B) There exists β > 0 such that 〈Qx∗, x∗〉 ≤ β2〈Qx∗, x∗〉 for any x∗ ∈ E∗.

It is not difficult to prove that Assumption (B) holds if and only if the following
equivalent conditions are satisfied:

– The mapping

U : i∗x∗ 7→ ι∗x∗, x∗ ∈ E∗, (10.2)

is well-defined and extends uniquely to a bounded linear operator U ∈
L(H,H ) of norm ≤ β;

– As subsets of E, we have the inclusion ιH ⊆ iH, together with the norm
estimate

|h|H ≤ β|h|H , h ∈H . (10.3)

In this situation, the operator j := U∗ ∈ L (H , H) is the inclusion mapping.
This assumption guarantees that the following version of Talagrand’s in-

equality [161] holds.

Proposition 10.3. Assume (B). Then D(Hγ) ⊆ PH,γ(E), and for all µ ∈
D(Hγ) we have

1
2β2

W 2
H(µ, γ) ≤ Hγ(µ),

where β > 0 has been defined in (B).
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Proof. It follows from (10.3) that WH(µ0, µ1) ≤ βWH (µ0, µ1) for all µ0, µ1 ∈
P(E). Combining this inequality with Talagrand’s inequality [161] in abstract
Wiener spaces (see [62, Theorem 3.1], [54, Section 5], or [66, Théorème 5.8.7]):

1
2
W 2

H (µ, γ) ≤ Hγ(µ), µ ∈P(E),

we obtain the result. �

The goal of this section is to prove that, under Assumption (B), Gaussian
entropy functionals are β−2-convex along generalised geodesics. The proof
proceeds along the lines of [150], where the case H = H has been considered.

Theorem 10.4. Assume (B) and let σ, µi ∈ D(Hγ) for i = 0, 1. Let Ξ ∈
P(E3) be such that π1,2

# Ξ ∈ Γo(σ, µ0) and π1,3
# Ξ ∈ Γo(σ, µ1). For all t ∈ [0, 1]

we have

Hγ(µt) ≤ (1− t)Hγ(µ0) + tHγ(µ1)− 1
2β2

t(1− t)W 2
H(µ0, µ1), (10.4)

where µt := (π2→3
t )#Ξ, and β > 0 has been defined in (B).

The proof of this result relies on a finite dimensional approximation pro-
cedure.

A finite dimensional result

First we will state the finite dimensional displacement convexity result which
will be used in the approximation argument.

In this subsection we will work in E = Rn endowed with the Euclidean
metric | · |. We consider σ ∈ P(Rn) of the form σ = Z−1e−V L n, where
Z :=

∫
Rn e

−V dL n is a normalising constant, and V ∈ C2(Rn) is K-convex
for some K ≥ 0, i.e.,

V
(
(1− t)x+ ty

)
≤ (1− t)V (x) + tV (y)− 1

2
Kt(1− t)|x− y|2Rn

for every x, y ∈ Rn and t ∈ [0, 1], or equivalently, D2V (x) ≥ K in the ordering
of positive matrices for every x ∈ Rn.

The following displacement convexity result for the relative entropy func-
tional Hσ is well known (see, e.g., [166, Theorem 17.15] for the case of con-
vexity along an optimal plan, and [4, Theorem 9.4.11] for a version with gen-
eralised geodesics and K = 0). We use the notation ΓRn

o to denote optimal
plans with respect to the Wasserstein distance WRn induced by the Euclidean
metric on Rn.

Lemma 10.5. Take σ, µ0, µ1 ∈ D(Hσ) and Ξ ∈ P
(
R3n) such that π1,2

# Ξ ∈
ΓRn
o (σ, µ0) and π1,3

# Ξ ∈ ΓRn
o (σ, µ1), and set µt :=

(
π2→3
t

)
#
Ξ for t ∈ [0, 1].

Then

Hσ(µt) ≤ (1− t)Hσ(µ0) + tHσ(µ1)− 1
2
Kt(1− t)W 2

Rn(µ0, µ1), t ∈ [0, 1].
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Cylindrical approximation

We continue with finite dimensional approximation of probability measures.
Recall that the collection C and the functionals (x∗n)n≥1 and (y∗n)n≥1 have
been introduced in Section 6.3.

Lemma 10.6. The set C is dense in Lp(γ) for all 1 ≤ p <∞.

Proof. We claim that the linear subspace S spanned by (ι∗x∗n)n≥1 is dense in
H . Indeed, it suffices to show that this subspace is weak∗-dense, i.e., sepa-
rating. Suppose that [h, ι∗x∗n]H = 0 for some h ∈ H and all n ≥ 1. Then
〈ιh, x∗n〉 = 0, which implies that h = 0, since the subspace spanned by (y∗n)n≥1

(which equals the subspace spanned by (x∗n)n≥1) was chosen to be weak∗-dense
in E∗.

Consequently, for each z∗ ∈ E∗ we can find a sequence of functionals
(ι∗z∗n)n≥1 ⊆ S such that ι∗z∗n → ι∗z∗ in H . By Proposition 1.12 and Theorem
1.18 this implies that 〈·, z∗n〉 → 〈·, z∗〉 in Lp(γ) for any 1 ≤ p < ∞. Using
this fact and an easy truncation argument, we obtain that, for any Hermite
polynomial Hm with m ≥ 0, the function Hm(〈·, z∗〉) can be approximated in
Lp(γ) with elements from C. The result follows from this observation, since
the functions of the form Hm(〈·, z∗〉) span a dense subspace of Lp(γ) by (1.2)
and Theorem 1.18. �

The following easy lemma will be used in the proof of Proposition 10.8
below.

Lemma 10.7. Let (µn)n≥1 ⊆ P(E) be tight and suppose that the Fourier
transform (µ̂n(x∗))n≥1 converges for each x∗ ∈ E∗. Then (µn)n≥1 converges
weakly.

Proof. See [130, Lemma 2.18]. �

Proposition 10.8. Assume (B). For all µ ∈P(E) satisfying µ� γ we have
(Pn)#µ ⇀ µ as n→∞.

Proof. We proceed in several steps.
Step 1: We prove the result for µ = γ.
The Fourier transforms of γn := (Pn)#γ and γ are given for x∗ ∈ E∗ by

γ̂n(x∗) = exp
(
− 1

2
〈PnQP∗nx

∗, x∗〉
)
,

γ̂(x∗) = exp
(
− 1

2
〈Qx∗, x∗〉

)
.

In view of the identity P∗nx
∗ =

∑n
k=1〈Qx∗k, x∗〉x∗k and (10.3), we obtain
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〈PnQP∗nx
∗, x∗〉 =

〈
Q

n∑
j=1

〈Qx∗j , x∗〉x∗j ,
n∑
k=1

〈Qx∗k, x∗〉x∗k
〉

=
∥∥∥ n∑
k=1

[i∗x∗k, i
∗x∗]ι∗x∗k

∥∥∥2

H
= ‖UPni

∗x∗‖2H

≤ ‖U‖2 ‖i∗x∗‖2H = β2 〈Qx∗, x∗〉,

where β > 0 has been defined in (B). Since Q is the covariance of a Gaussian
measure on E, this estimate implies that the sequence (γn)n≥1 is tight by
covariance domination (Proposition 1.5). Using the boundedness of U once
more, for each x∗ ∈ E∗ we obtain, as n→∞,

〈PnQP∗nx
∗, x∗〉 = ‖UPni

∗x∗‖2H → ‖Ui∗x∗‖2H = ‖ι∗x∗‖2H = 〈Qx∗, x∗〉,

hence γ̂n(x∗)→ γ̂(x∗). Therefore Lemma 10.7 yields the desired conclusion.
Step 2: The result holds for µ = ργ, where ρ ∈ C.
Indeed, since ρ ◦Pn = ρ for n large enough, we obtain for any ϕ ∈ Cb(E),

lim
n→∞

∫
E

ϕd(Pn)#(ργ) = lim
n→∞

∫
E

(ϕ ◦ Pn) · ρ dγ

= lim
n→∞

∫
E

(ϕ ◦ Pn) · (ρ− ρ ◦ Pn) dγ +
∫
E

(ϕ · ρ) ◦ Pn dγ

= lim
n→∞

∫
E

ϕρ dγn =
∫
E

ϕρ dγ,

where we used Step 1 and the fact that ϕρ ∈ Cb(E).
Step 3: We prove the result for µ = ργ, where ρ ∈ L1(γ) is an arbitrary

probability density on E.
For this purpose, let ε > 0 and take, using Lemma 10.6, ρ̃ ∈ C such that

‖ρ− ρ̃‖L1(γ) < ε. For ϕ ∈ Cb(E) and n large enough we obtain from Step 2,∣∣∣ ∫
E

(ϕ ◦ Pn) · ρ dγ −
∫
E

ϕρ dγ
∣∣∣ ≤ ∣∣∣ ∫

E

(ϕ ◦ Pn) ·
(
ρ− ρ̃

)
dγ
∣∣∣

+
∣∣∣ ∫
E

(
ϕ ◦ Pn − ϕ

)
ρ̃ dγ

∣∣∣+
∣∣∣ ∫
E

ϕ
(
ρ̃− ρ

)
dγ
∣∣∣

≤ ε‖ϕ‖∞ + ε+ ε‖ϕ‖∞,

which gives the result. �

Proof of the convexity of the Gaussian entropy
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Proof (of Theorem 10.4). Let us first remark that WH(σ, µi) <∞ for i = 0, 1,
as a consequence of Talagrand’s inequality (Proposition 10.3) and the triangle
inequality.

Put σn := (Pn)#σ and µni := (Pn)#µi. Proposition 10.8 implies that
σn ⇀ σ and µni ⇀ µi. We claim that WH(µn0 , µ

n
1 ) ≤ WH(µ0, µ1). Indeed, for

Σ̂ ∈ Γo(µ0, µ1) and Σ̂n := (Pn × Pn)#Σ̂ we have

W 2
H(µn0 , µ

n
1 ) ≤

∫
E×E

|x− y|2H dΣ̂n =
∫
E×E

|Pn(x− y)|2H dΣ̂

≤
∫
E×E

|x− y|2H dΣ̂ = W 2
H(µ0, µ1).

(10.5)

By the same argument we obtain that WH(σn, µni ) ≤ WH(σ, µi) for i = 0, 1.
Take Ξn ∈P(E3) satisfying

π1,2
# Ξn ∈ Γo(σn, µn0 ), π1,3

# Ξn ∈ Γo(σn, µn1 ).

Since the collections (σn)n≥1 and (µni )n≥1 for i = 0, 1, are tight by Prokhorov’s
Theorem 6.1, the collection (Ξn)n≥1 is tight as well. By passing to a subse-
quence we may assume that Ξn converges weakly to Ξ ∈ Γ (σ, µ0, µ1). Using
Lemma 6.2 we obtain

W 2
H(σ, µ0) ≤

∫
E3
|x− y|2H dΞ(x, y, z)

≤ lim
n→∞

∫
E3
|x− y|2H dΞn(x, y, z) = lim

n→∞
W 2
H(σn, µn0 ).

(10.6)

Since we already obtained the inequality WH(σn, µni ) ≤ WH(σ, µi) for all
n ≥ 1, we infer that equality must hold in (10.6). In particular this implies
that π1,2

# Ξ ∈ Γo(σ, µ0), and by the same argument, π1,3
# Ξ ∈ Γo(σ, µ1).

Note that γn := Pn#γ is a Gaussian measure on E, which is supported on
the finite dimensional Hilbertian subspace

H(n) := lin(i∗x∗k)1≤k≤n.

We use the orthogonal basis (i∗x∗k)1≤k≤n to identify H(n) with Rn, and re-
mark that under this identification the covariance operator PnQPn∗ of γn is
represented by the matrix Rn = (〈Qx∗k, x

∗
l 〉)nk,l=1. For a1, . . . , an ∈ R we set

x∗ :=
∑n
k=1 akx

∗
k. Using (B) we obtain

n∑
k,l=1

〈Qx∗k, x
∗
l 〉akal = 〈Qx∗, x∗〉

≤ β2〈Qx∗, x∗〉 = β2
n∑

k,l=1

〈Qx∗k, x∗l 〉akal = β2
n∑
k=1

a2
k,
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which shows that Rn ≤ β2 in the ordering of positive matrices. Note that
the measure γn has a density with respect to Lebesgue measure of the form
Z−1e−V , where Z > 0 and V (ξ) := 1

2 [(Rn)−1ξ, ξ]. For 0 < t < 1, put

µnt := (π2→3
t )#Ξn.

Since D2V (ξ) = (Rn)−1 ≥ β−2, it follows from Lemma 10.5 that

Hγn(µnt ) ≤ (1− t)Hγn(µn0 ) + tHγn(µn1 )− 1
2β2

t(1− t)W 2
H(n)(µn0 , µ

n
1 )

≤ (1− t)Hγ(µ0) + tHγ(µ1)− 1
2β2

t(1− t)W 2
H(µn0 , µ

n
1 ).

(10.7)

Since µnt converges weakly to µt := (π2→3
t )#Ξ as n→∞, Lemma 10.1 implies

thatHγ(µt) ≤ limn→∞Hγn(µnt ). Therefore, in order to prove (10.4), it suffices
to prove that

lim
n→∞

W 2
H(µn0 , µ

n
1 ) = W 2

H(µ0, µ1). (10.8)

For this purpose, take Υn ∈ ΓHo (µn0 , µ
n
1 ). The tightness of (µn0 )n≥1 and

(µn1 )n≥1 implies that (Υn)n≥1 is tight. Passing to a subsequence we may as-
sume that Υn converges weakly to some Υ ∈ Γ (µ0, µ1). Applying Lemma 6.2
we arrive at

W 2
H(µ0, µ1) ≤

∫
E×E

|x− y|2H dΥ (x, y)

≤ lim
n→∞

∫
E×E

|x− y|2H dΥn(x, y) = lim
n→∞

W 2
H(µn0 , µ

n
1 ),

(10.9)

and combining this with (10.5), we obtain (10.8). This completes the proof of
(10.4). �

10.3 Entropy gradient flows and Fokker-Planck equations

In this section we establish a connection between Parts I and II of this thesis by
applying the theory developed in the current chapter to the study of Fokker-
Planck equations associated with a class of infinite dimensional stochastic
processes.

We will follow the line of argumentation from the paper by Fang, Shao,
and Sturm [59], who adapted the approach of Jordan, Kinderlehrer, and Otto
[85] to the Wiener space setting.

We consider the following setup:

• −A is the generator of a C0-semigroup (S(t))t≥0 of bounded linear oper-
ators on a separable Banach space E.
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• As before, H is a separable Hilbert space, i : H ↪→ E is a continuous
embedding, and Q := ii∗ ∈ L(E∗, E).

Furthermore, we will assume in the sequel that the functionals (x∗n)n≥1 ap-
pearing in the definition of C in Section 6.2 are contained in D(A∗). This can
be assumed without loss of generality, since D(A∗) is weak∗-dense in E∗.

We consider the following assumptions:

(C1) For each t > 0, the operator Qt ∈ L(E∗, E) defined by

Qt :=
∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗,

is the covariance of a Gaussian measure µt on E. Moreover, Q∞ :=
limt→∞Qt exists in the weak operator topology, and Q∞ is the covari-
ance of a Gaussian measure µ∞ on E, whose reproducing kernel Hilbert
space (see Section 1.2) will be denoted by H∞.

Assumption (C1) has already been imposed in Section 2.1 of Part I. It allows
the construction of the associated Ornstein-Uhlenbeck semigroup P, which is
defined for t ≥ 0 and f ∈ Cb(E) by

(P (t)f)(x) :=
∫
E

f(S(t)x+ y) dµt(y), x ∈ E.

The measure µ∞ is an invariant measure for P in the sense that for all t ≥ 0,∫
E

P (t)f dµ∞ =
∫
E

f dµ∞, f ∈ Cb(E).

Furthermore, the semigroup P extends to a C0-semigroup of positive contrac-
tions on Lp(µ∞) for 1 ≤ p <∞. The generator is denoted by −L and admits
the expression

Lf(x) = −1
2

n∑
k,`=1

〈Qx∗k, x∗` 〉∂k∂`ϕ(〈x, x∗1〉, . . . , 〈x, x∗n〉)

+
n∑
k=1

〈x,A∗x∗k〉∂kϕ(〈x, x∗1〉, . . . , 〈x, x∗n〉), x ∈ E,
(10.10)

for functions f ∈ C of the form (7.2) (see also (4.2)). We refer to Chapter 2
for more information on Ornstein-Uhlenbeck semigroups.

(C2) For t ∈ [0,∞) we have QS∗(t) = S(t)Q.

In Proposition 2.18 various characterisations of this assumption have been
stated. In particular, it has been shown that this assumption is equivalent to
the selfadjointness of the Ornstein-Uhlenbeck semigroup P .
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(C3) There exists a constant β > 0 such that

〈Q∞x∗, x∗〉 ≤ β2〈Qx∗, x∗〉, x∗ ∈ E∗.

It has already been discussed in Section 10.2 that Assumption (C3) is equi-
valent to the existence of a bounded operator U ∈ L(H,H∞) of norm ≤ β
satisfying U(i∗x∗) = i∗∞x

∗ for every x∗ ∈ E∗. This condition holds if and only
if H∞ ⊆ H and

|h|H ≤ β|h|H∞ , h ∈ H, (10.11)

in which case the operator j := U∗ is the inclusion mapping from H∞ into H.
The next result, taken from [33, Theorem 4.2] and [70, Lemma 5.2], pro-

vides equivalent conditions in terms of decay rates for various semigroups.
Recall from Chapter 2 that the semigroups S∞ and SH denote the restric-
tions of the drift semigroup S to the Hilbert spaces H∞ and H respectively.

Proposition 10.9. Assume (C1) and (C2). The following conditions are
equivalent for β > 0:

(1) Assumption (C3) holds;
(2) ‖S∞(t)‖L(H∞) ≤ exp(− t

2β2 ) for t ≥ 0;
(3) ‖SH(t)‖L(H) ≤ exp(− t

2β2 ) for t ≥ 0;
(4) ‖P (t)f‖L2(µ∞) ≤ exp(− t

2β2 )‖f‖L2(µ∞) for t ≥ 0 and all f ∈ L2(µ∞)
satisfying

∫
E
f dµ∞ = 0.

Further equivalent conditions can be given in terms of a logarithmic Sobolev
inequality for the generator −L and a hypercontractivity estimate for the
semigroup P. We refer to [33] for the details.

• From now on we assume that (C1) – (C3) are satisfied.

As an application of the theory developed in the first part of this chapter
we obtain the following result.

Theorem 10.10. The relative entropy functional Hµ∞ is (β−2)-convex along
generalised geodesics in (P(E),WH). More precisely, let σ, νi ∈ D(Hµ∞) for
i = 0, 1. For each Ξ ∈ P(E3) satisfying π1,2

# Ξ ∈ Γo(σ, ν0) and π1,3
# Ξ ∈

Γo(σ, ν1), and for any t ∈ [0, 1] we have

Hµ∞(νt) ≤ (1− t)Hµ∞(ν0) + tHµ∞(ν1)− 1
2β2

t(1− t)W 2
H(ν0, ν1), (10.12)

where νt := (π2→3
t )#Ξ, and β > 0 has been defined in (C3).

Proof. This follows immediately from Theorem 10.4 and (C3). �
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Combining this result with the abstract theory developed in [4] we obtain
the existence of a gradient flow on P(E) associated with the functional Hµ∞
and the (pseudo)-metric WH .

Theorem 10.11. Let σ ∈ D(Hµ∞). There exists a unique gradient flow u ∈
C([0,∞); P(E)) ∩ ACloc((0,∞); P(E)) associated with the functional Hµ∞
and satisfying u(0) = σ. Moreover, for any σ0, σ1 ∈ D(Hµ∞) we have

WH(u0(t), u1(t)) ≤ e−t/β
2
WH(σ0, σ1), t ≥ 0, (10.13)

where u0 and u1 are the gradient flows starting from σ0 and σ1 respectively.

More explicitly, in view of Definition 9.1, this result asserts that there
exists a unique function u ∈ C([0,∞); P(E))∩ACloc((0,∞); P(E)) satisfying
u(0) = σ and, for any ν ∈ D(Hµ∞), the evolution variational inequality

1
2
∂tW

2
H(u(t), ν) +

1
2β2

W 2
H(u(t), ν) ≤ Hµ∞(ν)−Hµ∞(u(t)) (10.14)

a.e. on (0,∞).

Proof. This is a consequence of Proposition 8.7, Theorem 9.2, and Theorem
10.10. �

Let us introduce some notation. We will denote by

δH : D(δH) ⊆ L2(µ∞;H)→ L2(µ∞)

the adjoint of the gradient ∇H . Similarly, we let

δH∞ : D(δH∞) ⊆ L2(µ∞;H∞)→ L2(µ∞)

be the adjoint of the gradient ∇H∞ .

Remark 10.12. The simplest operator L contained in the framework of this
section is the classical Ornstein-Uhlenbeck operator (also known as the num-
ber operator). To obtain this operator we let Q be the covariance of a Gaus-
sian measure µQ on E, and set S(t) := e−tIE for t ≥ 0. In this case we have
Q∞ = 1

2Q, and the conditions (C1) – (C3) are trivially fulfilled with β = 1√
2
.

The Ornstein-Uhlenbeck operator L can be written as

L = δH∞∇H∞ =
1
2
δH∇H .

Theorem 10.10 and Theorem 10.11 imply that Hµ∞ is 2-convex along gen-
eralised geodesics, and WH(u0(t), u1(t)) ≤ e−2tWH(σ0, σ1), for t ≥ 0, where
u0, u1 : [0,∞)→P(E) are the gradient flows starting from σ0 and σ1 respec-
tively.
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Since |h|H = 1√
2
|h|H∞ for any h ∈ H, it follows that the same func-

tional Hµ∞ is 1-convex with respect to the different Wasserstein metric WH∞ ,
which corresponds to the result proved in [59]. Accordingly, it follows that
WH∞(ũ0(t), ũ1(t)) ≤ e−tWH∞(σ0, σ1) for the associated gradient flow with
respect to the metric WH∞ .

The difference between the rates of exponential decay is due to the fact
that ũi(2t) = ui(t) for t ≥ 0, which can be seen from the exponential formulae
(Theorem 9.2(i)).

In the remainder of this section we will show that the gradient flow asso-
ciated with the functional Hµ∞ and the metric WH satisfies a Fokker-Planck
equation associated with the operator L. The proof proceeds along the lines
of [59, 85] with some modifications.

We will use the following result of Cruzeiro [42] on the existence of flows
associated with Malliavin differentiable vector fields on Wiener spaces. Gen-
eralisations have been recently proved in [3, 58]. We formulate the result in
the Wiener space (E,H∞, µ∞). The spaces W k,p

H∞
(µ∞) and W k,p

H∞
(µ∞;H∞)

appearing below are the Gaussian Sobolev spaces for the Malliavin derivative,
which correspond to the spaces considered in Section 11.4 in the special case
where µ = µ∞, H = H∞, and V = IH∞ .

Proposition 10.13. Let Y ∈
⋂
k≥1W

k,2
H∞

(µ∞;H∞) be such that

exp
(
ε0|Y |H∞

)
, exp

(
κ0‖∇H∞Y ‖L(H∞)

)
, exp

(
λ0|δH∞Y |

)
∈ L1(µ∞)

for every ε0, κ0, λ0 > 0. Then there exists a collection (Ut)t∈R of Borel maps
Ut : E → E such that{

Us+t = Us ◦ Ut, s, t ∈ R,
Ut(x) = x+

∫ t
0
Y (Us(x)) ds, t ∈ R, for µ∞-a.e. x in E.

(10.15)

Moreover, if δH∞Y ∈W
1,16
H∞

(µ∞), we have for t ∈ R,

(Ut)#µ∞ = exp
(∫ t

0

δH∞Y (U−s(x)) ds
)
µ∞.

Proof. See [42, Theorem 1.4.1]. �

The next proposition is a variation of this result involving H-valued (in-
stead of H∞-valued) vector fields.

Proposition 10.14. For f ∈ C there exists a collection (Ut)t∈R of Borel maps
Ut : E → E satisfying{

Us+t = Us ◦ Ut, s, t ∈ R,
Ut(x) = x+

∫ t
0
∇Hf(Us(x)) ds, t ∈ R, for µ∞-a.e. x in E.

(10.16)
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Moreover, for t ∈ R we have

(Ut)#µ∞ = exp
(

2
∫ t

0

Lf(U−s(x)) ds
)
µ∞. (10.17)

Proof. We claim that i(∇Hf(x)) = 2i∞(A∗∞∇H∞f(x)) for all x ∈ E. To prove
the claim, we note that i∗∞(D(A∗)) ⊆ D(A∗∞) by Lemma 2.9. In view of (C2),
Proposition 2.18, and Corollary 2.12, we obtain for x∗, y∗ ∈ D(A∗),

〈i∞(A∗∞i∗∞x∗), y∗〉 = [A∗∞i∗∞x∗, i∗∞y∗]

=
1
2

[A∗∞i∗∞x∗, i∗∞y∗] +
1
2

[i∗∞x
∗,A∗∞i∗∞y∗]

=
1
2

[i∗x∗, i∗y∗] =
1
2
〈ii∗x∗, y∗〉.

Since i∗∞(D(A∗)) is weak∗-dense in H∞, we infer that 2i∞(A∗∞i∗∞x∗) =
i(i∗x∗), which implies the claimed identity.

Therefore the result follows from Proposition 10.13 applied to Y :=
2A∗∞∇H∞f, and the observation that δH∞Y = 2Lf, which is a consequence
of Theorem 2.16 and Theorem 4.3. �

In Lemma 10.15 and Proposition 10.16 we fix f ∈ C and let (Ut)t∈R be
the associated collection of Borel maps Ut : E → E obtained in Proposition
10.14. For t ∈ R we consider the functions Kt, At : E → E defined for µ∞-a.e.
x ∈ E by

Kt(x) := exp
(

2
∫ t

0

Lf(U−s(x)) ds
)
, At(x) :=

1
t

∫ t

0

Lf(Ut−s(x)) ds,

with the understanding that A0 = Lf. The following lemma will be used in
the proof of Proposition 10.16.

Lemma 10.15. For µ ∈ D(Hµ∞) and T > 0, the collection (At)0≤t≤T is
uniformly bounded in L2(µ).

Proof. We proceed in three steps.
Step 1. We claim that for any t > 0,

sup
|s|≤t
‖Ks‖2L2(µ∞) ≤

∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x) <∞. (10.18)

To prove the claim, we use Jensen’s inequality (in the second estimate)
and (10.17) to obtain
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‖Kt‖2L2(µ∞) ≤
∫
E

exp
(

1
t

∫ t

0

4t|Lf(U−s(x))| ds
)
dµ∞(x)

≤
∫
E

1
t

∫ t

0

exp
(

4t|Lf(U−s(x))|
)
ds dµ∞(x)

=
1
t

∫ t

0

∫
E

exp
(

4t|Lf(x)|
)
K−s(x) dµ∞(x) ds

≤ 1
t

∫ t

0

(∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x)

)1/2

‖K−s‖L2(µ∞) ds

=
1
t

∫ t

0

‖K−s‖L2(µ∞) ds

(∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x)

)1/2

.

Replacing f by −f and arguing similarly we find that

‖K−t‖2L2(µ∞) ≤
1
t

∫ t

0

‖Ks‖L2(µ∞) ds

(∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x)

)1/2

.

Combining these estimates we obtain

max
{
‖K−t‖2L2(µ∞), ‖Kt‖2L2(µ∞)

}
≤ sup
|s|≤t
‖Ks‖L2(µ∞)

(∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x)

)1/2

,

and therefore

sup
|s|≤t
‖Ks‖2L2(µ∞) ≤

∫
E

exp
(

8t|Lf(x)|
)
dµ∞(x).

The finiteness of the right-hand side follows by combining Fernique’s Theorem
1.3 with the fact that Lf(x) = b(x) + 〈x, F (x)〉 for some bounded functions
b ∈ Cb(E) and F ∈ Cb(E;E∗) according to (10.10). This completes the proof
of (10.18).

Step 2. There exists ε0 > 0 such that for any t > 0 we have∫
E

exp
(
ε0|At(x)|2

)
dµ∞(x) ≤ sup

0≤s≤t
‖Ks‖L2(µ∞)

×
(∫

E

exp
(

2ε0|Lf(x)|2
)
dµ∞(x)

)1/2

<∞.
(10.19)

To prove this estimate, we write Lf(x) = b(x) + 〈x, F (x)〉 as in Step 1.
Fernique’s Theorem 1.3 implies that there exists ε0 > 0 such that∫

E

exp
(
2ε0|Lf(x)|2

)
dµ∞(x) <∞.

Using (10.17) and the inequalities of Jensen (twice) and Cauchy-Schwarz, we
obtain
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E

exp
(
ε0|At(x)|2

)
dµ∞(x)

=
∫
E

exp
(
ε0

∣∣∣∣1t
∫ t

0

Lf(Ut−s(x)) ds
∣∣∣∣2) dµ∞(x)

≤
∫
E

exp
(
ε0
t

∫ t

0

|Lf(Ut−s(x))|2 ds
)
dµ∞(x)

≤
∫
E

1
t

∫ t

0

exp
(
ε0|Lf(Ut−s(x))|2

)
ds dµ∞(x)

=
1
t

∫ t

0

∫
E

exp
(
ε0|Lf(x)|2

)
Kt−s(x) dµ∞(x) ds

≤ 1
t

∫ t

0

‖Kt−s‖L2(µ∞)

(∫
E

exp
(

2ε0|Lf(x)|2
)
dµ∞(x)

)1/2

ds

≤ sup
0≤s≤t

‖Ks‖L2(µ∞)

(∫
E

exp
(

2ε0|Lf(x)|2
)
dµ∞(x)

)1/2

,

which implies (10.19).
Step 3. To finish the proof, we write µ = ρµ∞ and use Young’s inequality

uv ≤ eu + v log v for u, v ≥ 0 to obtain in view of (10.18) and (10.19),∫
E

|At(x)|2 dµ(x)

=
∫
E

ε0|At(x)|2 ρ(x)
ε0

dµ∞(x)

≤
∫
E

exp
(
ε0|At(x)|2

)
dµ∞(x) +

1
ε0
Hµ∞(µ)− 1

ε0
log ε0

≤
(∫

E

exp
(

8t|Lf(x)|
)
dµ∞(x)

)1/2(∫
E

exp
(

2ε0|Lf(x)|2
)
dµ∞(x)

)1/2

+
1
ε0
Hµ∞(µ)− 1

ε0
log ε0,

which implies that sup0≤t≤T ‖At‖L2(µ) <∞. �

Proposition 10.16. Take µ ∈ D(Hµ∞) and h > 0. For Σ ∈ Γo(µ, Jhµ) and
f ∈ C we have

1
h

∫
E×E

[∇Hf(y), x− y]H dΣ(x, y) = 2
∫
E

Lf(x) d(Jhµ)(x). (10.20)

Proof. For each t > 0 we have
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1
2t
(
W 2
H(µ, (Ut)#(Jhµ))−W 2

H(µ, Jhµ)
)

≤ 1
2t

∫
E×E

|x− Ut(y)|2H − |x− y|2H dΣ

=
1
2t

∫
E×E

|y − Ut(y)|2H dΣ +
1
t

∫
E×E

[x− y, y − Ut(y)]H dΣ.

(10.21)

For µ∞-a.e. y in E we have

|y − Ut(y)|H =
∣∣∣∣ ∫ t

0

∇Hf(Us(y)) ds
∣∣∣∣
H

≤ ‖∇Hf‖∞t,

from which we infer that the first summand in the right hand side of (10.21)
tends to 0 as t ↓ 0. Moreover, the same estimate shows that t 7→ Ut(y) is
right-continuous at t = 0 for µ∞-a.e. y ∈ E, hence

Ut(y)− y
t

=
1
t

∫ t

0

∇Hf(Us(y)) ds→ ∇Hf(y), µ∞-a.e.

Since Jhµ� µ∞, this implies that for Σ-a.e. (x, y) ∈ E × E,

1
t
[x− y, y − Ut(y)]H → −[x− y,∇Hf(y)]H .

Since

1
t
|[x− y, y − Ut(y)]H | ≤ |x− y|H‖∇Hf‖∞

and ∫
E×E

|x− y|H dΣ ≤
(∫

E×E
|x− y|2H dΣ

)1/2

= WH(µ, Jhµ) <∞,

we can use the dominated convergence theorem to pass to the limit in (10.21)
to obtain

lim
t↓0

1
2t
(
W 2
H(µ, (Ut)#Jhµ)−W 2

H(µ, Jhµ)
)

= −
∫
E×E

[x− y,∇Hf(y)]H dΣ.

By definition of Jhµ we have

h

t

(
Hµ∞(Jhµ)−Hµ∞

(
(Ut)#Jhµ

))
≤ 1

2t

(
W 2
H(µ, (Ut)#Jhµ)−W 2

H(µ, Jhµ)
)
,

which leads to

lim
t↓0

1
t

(
Hµ∞(Jhµ)−Hµ∞

(
(Ut)#Jhµ

))
≤ − 1

h

∫
E×E

[x− y,∇Hf(y)]H dΣ.
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Replacing f by −f and arguing similarly, we arrive at

lim
t↓0

1
t

(
Hµ∞(Jhµ)−Hµ∞

(
(Ut)#Jhµ

))
≥ − 1

h

∫
E×E

[x− y,∇Hf(y)]H dΣ,

and combining these inequalities we infer that

lim
t↓0

1
t

(
Hµ∞(Jhµ)−Hµ∞

(
(Ut)#Jhµ

))
= − 1

h

∫
E×E

[x− y,∇Hf(y)]H dΣ.

(10.22)

On the other hand, (10.17) implies that for ν = ρµ∞ ∈ D(Hµ∞) and
ϕ ∈ Cb(E),∫

E

ϕ(x) d((Ut)#ν)(x) =
∫
E

ϕ(Ut(x))ρ(x) dµ∞(x)

=
∫
E

ϕ(x)ρ(U−t(x)) d((Ut)#µ∞)(x)

=
∫
E

ϕ(x)ρ(U−t(x))Kt(x) dµ∞(x),

and thus (Ut)#ν = ρtµ∞, where ρt(x) := ρ(U−t(x))Kt(x) for µ∞-a.e. x in E.
Taking into account that log(Kt ◦ Ut) = 2tAt ∈ L1(ν) by Lemma 10.15, it
follows that

Hµ∞((Ut)#ν) =
∫
E

log
(
ρ(U−t(x))Kt(x)

)
d((Ut)#ν)(x)

=
∫
E

log
(
ρ(x)Kt(Ut(x))

)
dν(x)

= Hµ∞(ν) +
∫
E

logKt(Ut(x)) dν(x)

= Hµ∞(ν) + 2t
∫
E

At(x) dν(x),

hence

Hµ∞((Ut)#ν)−Hµ∞(ν)
t

= 2
∫
E

At(x) dν(x).

Lemma 10.15 implies that (At)t∈[0,T ] is uniformly bounded in L2(ν), and
therefore uniformly integrable with respect to ν. Since t → Ut(x) is right-
continuous at t = 0 for ν-a.e. x ∈ E, it follows that At(x)→ Lf(x) for ν-a.e.
x ∈ E as t ↓ 0, hence

lim
t↓0

Hµ∞((Ut)#ν)−Hµ∞(ν)
t

= 2
∫
E

Lf(x) dν(x).

Applying this result to ν = Jhµ and using (10.22) we obtain (10.20). �
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Now we are in a position to show that the gradient flow associated with
Hµ∞ and WH solves a Fokker-Planck equation associated with L. The factor
2 appearing in the statement of the result is not essential and can be removed
by multiplying the entropy functional or the Hilbert space norm by a scaling
factor (see also Remark 10.12).

Theorem 10.17. For σ ∈ D(Hµ∞), let (σt)t≥0 be the gradient flow in
(P(E),WH) associated with the functional Hµ∞ and satisfying σ0 = σ, which
has been obtained in Theorem 10.11. The measures (σt)t≥0 satisfy the Fokker-
Planck equation

∂tσt + 2L∗σt = 0

in the following sense: for all f ∈ C and α ∈ C∞c [0,∞) we have

−
∫ ∞

0

α′(t)
∫
E

f(x) dσt(x) dt

+
∫ ∞

0

α(t)
∫
E

2Lf(x) dσt(x) dt = α(0)
∫
E

f(x) dσ(x).
(10.23)

Proof. Take f ∈ C and α ∈ C∞c [0,∞), and let T > 0 be such that supp(α) ⊆
[0, T ). For h ∈ (0, 1) set N := bTh c + 1. For k = 0, . . . , N − 1, we take
Σk ∈ Γo(Jkhσ, J

k+1
h σ) and set σht := Jkhσ whenever t ∈ ((k − 1)h, kh]. With

this notation we have∫ ∞
0

α′(t)f(x) dσht (x) dt

=
N−1∑
k=0

(
α((k + 1)h)− α(kh)

) ∫
E

f(x) d(Jk+1
h σ)(x)

=
N−1∑
k=0

α(kh)
(∫

E

f(x) d(Jkhσ)(x)−
∫
E

f(x) d(Jk+1
h σ)(x)

)
− α(0)

∫
E

f(x) dσ(x)

=
N−1∑
k=0

α(kh)
(∫

E×E
f(x)− f(y) dΣk(x, y)

)
− α(0)

∫
E

f(x) dσ(x).

Moreover, by Proposition 10.16,∫ ∞
0

α(t)
∫
E

2Lf(x) dσht (x) dt

=
N−1∑
k=0

∫ (k+1)h

kh

α(t) dt
∫
E

2Lf(x) d(Jk+1
h σ)(x)

=
1
h

N−1∑
k=0

∫ (k+1)h

kh

α(t) dt
∫
E×E

[∇Hf(y), x− y]H dΣk(x, y).
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Combining these two identities we infer that∫ ∞
0

α′(t)
∫
E

f(x) dσht (x) dt−
∫ ∞

0

α(t)
∫
E

2Lf(x) dσht (x) dt

=
N−1∑
k=0

α(kh)Ik +
N−1∑
k=0

βk

∫
E×E

[∇Hf(y), x− y]H dΣk(x, y)

− α(0)
∫
E

f(x) dσ(x)

= (I) + (II)− (III),

(10.24)

where

Ik :=
∫
E×E

f(x)− f(y)− [∇Hf(y), x− y]H dΣk(x, y),

βk := α(kh)− 1
h

∫ (k+1)h

kh

α(t) dt.

Before estimating both sums in (10.24) individually, we observe that by defi-
nition of Jk+1

h σ,

1
2h
W 2
H(Jkhσ, J

k+1
h σ) ≤ Hµ∞(Jkhσ)−Hµ∞(Jk+1

h σ),

hence

1
2h

N−1∑
k=0

W 2
H(Jkhσ, J

k+1
h σ) ≤

N−1∑
k=0

(
Hµ∞(Jkhσ)−Hµ∞(Jk+1

h σ)
)

= Hµ∞(σ)−Hµ∞(JNh σ).

(10.25)

To estimate (I) we use (10.25) to obtain

|(I)| ≤ 1
2
‖α‖∞‖∇2

Hf‖∞
N−1∑
k=0

∫
E×E

|x− y|2 dΣk

=
1
2
‖α‖∞‖∇2

Hf‖∞
N−1∑
k=0

W 2
H(Jkhσ, J

k+1
h σ)

≤ h‖α‖∞‖∇2
Hf‖∞

(
Hµ∞(σ)−Hµ∞(JNh σ)

)
,

from which we infer that (I)→ 0 as h→ 0.
To estimate (II) we use the estimates |βk| ≤ h‖α′‖∞ and N ≤ 2Th , the

Cauchy-Schwarz inequality, and (10.25) once more, to arrive at
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|(II)| ≤ h‖α′‖∞‖∇Hf‖∞
N−1∑
k=0

∫
E×E

|x− y|H dΣk(x, y)

≤ h‖α′‖∞‖∇Hf‖∞
√
N

(N−1∑
k=0

∫
E×E

|x− y|2H dΣk(x, y)
)1/2

≤
√

2Th ‖α′‖∞‖∇Hf‖∞
(N−1∑
k=0

W 2
H(Jkhσ, J

k+1
h σ)

)1/2

≤
√

2Th ‖α′‖∞‖∇Hf‖∞
√

2hHµ∞(σ),

which converges to 0 as h ↓ 0.
Combining the estimates for (I) and (II) with (10.24) we arrive at∫ ∞

0

α′(t)
∫
E

f(x) dσht (x) dt

−
∫ ∞

0

α(t)
∫
E

2Lf(x) dσht (x) dt+ α(0)
∫
E

f(x) dσ(x)→ 0,
(10.26)

as h ↓ 0.
It remains to analyse the limit behaviour of the first two terms in (10.26)

individually. Since σht ⇀ σt as h ↓ 0, we have for each t > 0,∫
E

f(x) dσht (x)→
∫
E

f(x) dσt(x), (10.27)

hence by dominated convergence,∫ ∞
0

α′(t)
∫
E

f(x) dσht (x) dt→
∫ ∞

0

α′(t)
∫
E

f(x) dσt(x) dt.

We claim that∫ ∞
0

α(t)
∫
E

Lf(x) dσht (x) dt→
∫ ∞

0

α(t)
∫
E

Lf(x) dσt(x) dt (10.28)

as h ↓ 0. The latter two identities together with (10.26) imply (10.23). There-
fore, to complete the proof, it remains to show (10.28).

For this purpose, we use the explicit formula (10.10) to write Lf(x) :=
b(x) + 〈x, F (x)〉 for some b ∈ Cb(E) and F ∈ Cb(E;E∗). For R > 0 let
ζR ∈ Cb(R) be a cut-off function satisfying supp ζR ⊆ [−2R, 2R], ‖ζR‖∞ ≤ 1,
and (ζR)|[−R,R] = 1. By Fernique’s Theorem 1.3 there exists ε > 0 such that∫

E

exp
(
ε|x|2E

)
dµ∞(x) <∞.

Using Young’s inequality uv ≤ eu + v log v for u, v ≥ 0 we obtain for t > 0
and h > 0,
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E

|〈x, F (x)〉|
(
1− ζR(|x|E)

)
dσht (x)

≤ ‖F‖∞
R

∫
E

|x|2E dσht (x)

≤ ‖F‖∞
R

(∫
E

exp
(
ε|x|2E

)
dµ∞(x) +

1
ε
Hµ∞(σht )− 1

ε
log ε

)
≤ ‖F‖∞

R

(∫
E

exp
(
ε|x|2E

)
dµ∞(x) +

1
ε
Hµ∞(σ)− 1

ε
log ε

)
=:

C

R
,

(10.29)

with C not depending on h and R. Combining this estimate with the fact that
b ∈ Cb(E), it follows that ∫

E

|Lf | dσht <∞.

Furthermore, as Hµ∞(σt) <∞, the same argument shows that∫
E

|Lf(x)| dσt(x) <∞. (10.30)

Taking into account that σht ⇀ σt and the functions b and 〈·, F (·)〉ζR(| · |E)
are contained in Cb(E), we obtain using (10.29),

lim
h↓0

∫
E

Lf(x) dσht (x)

= lim
R→∞

lim
h↓0

(∫
E

b(x) dσht (x) +
∫
E

〈x, F (x)〉ζR(|x|E) dσht (x)

+
∫
E

〈x, F (x)〉
(
1− ζR(|x|E)

)
dσht (x)

)
≤ lim
R→∞

(∫
E

b(x) dσt(x) +
∫
E

〈x, F (x)〉ζR(|x|E) dσt(x) +
C

R

)
≤
∫
E

b(x) dσt(x) +
∫
E

〈x, F (x)〉 dσt(x)

=
∫
E

Lf(x) dσt(x),

where the last inequality uses the dominated convergence theorem, which can
be applied since

∫
E
|〈x, F (x)〉| dµt <∞ in view of (10.30). The same argument

shows that

lim
h↓0

∫
E

Lf(x) dσht (x) ≥
∫
E

Lf(x) dσt(x),

and therefore we arrive at
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lim
h↓0

∫
E

Lf(x) dσht (x) =
∫
E

Lf(x) dσt(x).

Since |
∫
E
Lf(x) dσht (x)| ≤ ‖b‖∞ + C

R + 2R‖F‖∞ for any h > 0, t > 0, and
R > 0, the dominated convergence theorem (which can be used due to the
fact that α ∈ C∞c [0,∞)) implies that

lim
h↓0

∫ ∞
0

α(t)
∫
E

Lf(x) dσht (x) dt =
∫ ∞

0

α(t)
∫
E

Lf(x) dσt(x) dt,

which proves (10.28). This completes the proof. �





Part III

Malliavin Calculus in Banach Spaces
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Banach Space-valued Analysis on Wiener
Spaces

This chapter deals with the Malliavin calculus for Banach space-valued ran-
dom variables. Using radonifying operators instead of symmetric tensor prod-
ucts we extend the Wiener-Itô isometry to Banach spaces. In the white noise
case we obtain two sided Lp-estimates for multiple stochastic integrals in arbi-
trary Banach spaces. It is shown that the Malliavin derivative is bounded on
vector-valued Wiener-Itô chaoses. Our main tools are decoupling inequalities
for vector-valued random variables. In the opposite direction we use Meyer’s
inequalities to give a new proof of a decoupling result for Gaussian chaoses in
UMD Banach spaces.

11.1 Preliminaries

We start by collecting some preliminary results on decoupling, γ-radonifying
operators, and UMD Banach spaces.

Decoupling

Decoupling inequalities go back to the work of McConnell and Taqqu [119,
120], Kwapień [96], Arcones and Giné [6], and de la Peña and Montgomery-
Smith [50] among others. We refer to the monographs [49, 97] for extensive
information on this topic.

First we introduce some notation which will be used throughout this chap-
ter. For j ≥ 1 and a finite sequence i = (i1, . . . , in) with values in {1, 2, . . .}
we set

j(i) = #{ik : 1 ≤ k ≤ n, ik = j}, |i| = n, |i|∞ := max
1≤k≤n

ik, i! =
n∏
k=1

k(i)!.

Let (γn)n≥1 be a Gaussian sequence, i.e. a sequence of independent standard
Gaussian random variables on a (sufficiently rich) probability space (Ω,F ,P),
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and let (γ(k)
n )n≥1 be independent copies for each k ≥ 1. Let (Hm)m≥0 denote

the Hermite polynomials already considered in Chapter 1. We set

Ψi = (i!)1/2
∏
j≥1

Hj(i)(γj).

The next theorem states two well-known decoupling results which were
obtained in [6, 96, 120]. A general result containing both parts of the next
theorem is due to Giné (see, e.g. [49, Theorem 4.2.7]).

Theorem 11.1. Let E be a Banach space, let m,n ≥ 1, and suppose that we
are in one of the following two situations:

1. (symmetric case) Let (xi)|i|=m ⊆ E satisfy xi = xi′ whenever i′ is a
permutation of i, and set

F :=
∑

|i|=m,|i|∞≤n

(i!/m!)1/2Ψixi.

2. (tetrahedral case) Let (xi)|i|=m ⊆ E satisfy xi = 0 whenever j(i) > 1 for
some j ≥ 1, and set

F :=
∑

|i|=m,|i|∞≤n

γi1 · . . . · γimxi.

In both cases we put

F̃ :=
∑

|i|=m,|i|∞≤n

γ
(1)
i1
· . . . · γ(m)

im
xi.

Then there exists a constant Cm ≥ 1 depending only on m, such that for all
t > 0 we have

1
Cm

P(‖F̃‖E > Cmt) ≤ P(‖F‖E > t) ≤ CmP(‖F̃‖E >
t

Cm
).

Consequently, for 1 ≤ p <∞ we have

‖F‖Lp(Ω;E) hp,m ‖F̃‖Lp(Ω;E).

Remark 11.2. The requirement that |i|∞ ≤ n is chosen for convenience, to
ensure that we are dealing with finite sums exclusively. Note however that the
constants in all of our estimates do not depend on n.

Spaces of γ-radonifying operators

The class of radonifying operators which has been considered in Part I will
play an important role in this chapter. We refer to Section 5.2 for the definition
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and the basic properties. An important role is played by spaces of iterated
radonifying operators γm(H,E). We define these spaces inductively by

γ1(H,E) := γ(H,E), γm+1(H,E) := γ(H, γm(H,E)), m ≥ 1.

To improve readability we will write T (h, h′) instead of (Th)(h′) if T ∈
γ2(H,E). Furthermore we will write (h ⊗ h′) ⊗ x to denote the operator
h ⊗ (h′ ⊗ x) ∈ γ2(H,E). Similar remarks apply when m > 2. For future
use we record that for operators of the form

T =
∑

|i|=m,|i|∞≤n

(ui1 ⊗ · · · ⊗ uim)⊗ xi, xi ∈ E, (11.1)

the norm in γm(H,E) is given by

‖T‖2γm(H,E) = E
∥∥∥ ∑
|i|=m,|i|∞≤n

γ
(1)
i1
· . . . · γ(m)

im
xi

∥∥∥2

E
, (11.2)

where we use the multi-index notation from Section 11.1.
If K is a Hilbert space then γm(H,K) is canonically isometric to the

Hilbert space tensor product H⊗̂m⊗̂K. It has been shown in [90] (see also
[134]) that γm(H,E) is isomorphic to γ(H⊗̂m, E) for all m ≥ 1 if and only if
the Banach space E has Pisier’s property (α) [144].

We have already considered in Proposition 5.13 the pairing

[T, S]γ := tr (T ∗S), T ∈ γ(H,E), S ∈ γ(H,E∗), (11.3)

which allows us to identify γ(H,E∗) with a weak∗-dense subspace of the dual
space γ(H,E)∗. The next result from [147] (see also [90]) shows that if E is
K-convex, the inclusion γ(H,E∗) ↪→ γ(H,E)∗ is actually an isomorphism.

Proposition 11.3. If E is K-convex, then (11.3) establishes an isomorphism
of Banach spaces

γ(H,E∗) ' (γ(H,E))∗.

We will return to K-convexity and its relevance for vector-valued Malliavin
calculus in Remark 11.7 below.

Let us now consider the important special case thatH = L2(M,µ) for some
σ-finite measure space (M,µ). A strongly measurable function φ : Mm → E
is said to be weakly-L2 if 〈φ, x∗〉 ∈ L2(Mm) for all x∗ ∈ E∗. We say that such
a function represents an operator Tφ ∈ γm(L2(M), E) if for all f1, . . . , fm ∈
L2(M) and for all x∗ ∈ E∗ we have

〈Tφ(f1, . . . , fm), x∗〉 =
∫
Mm

f1(t1) · . . . · fm(tm)·

· 〈φ(t1, . . . , tm), x∗〉 dµ⊗m(t1, . . . , tm).

We will not always notationally distinguish between a function φ and the
operator Tφ ∈ γ(L2(M), E) that it represents. The subspace of operators
which can be represented by a function is dense in γm(L2(M), E).
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UMD Banach spaces

Let us collect some well-known facts concerning UMD Banach spaces. Let
1 < p < ∞. A Banach space E is called a UMD(p)-space if there exists
a constant βp,E such that for every finite Lp-martingale difference sequence
(dj)nj=1 with values in E and for every {−1, 1}-valued sequence (εj)nj=1 we
have (

E
∥∥∥ n∑
j=1

εjdj

∥∥∥p) 1
p ≤ βp,E

(
E
∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

.

It can be shown that if E is a UMD(p) space for some 1 < p <∞, then it is a
UMD(p)-space for all 1 < p < ∞, and henceforth a space with this property
will simply be called a UMD space.

Examples of UMD spaces are all Hilbert spaces and the spaces Lp(S) for
1 < p <∞ and σ-finite measure spaces (S,Σ, µ). If E is a UMD space, then
Lp(S;E) is a UMD space for 1 < p < ∞. For an overview of the theory
of UMD spaces and its applications in vector-valued stochastic analysis and
harmonic analysis we recommend Burkholder’s review article [21].

11.2 Wiener-Itô chaos in Banach spaces

In this section we will prove a Banach space analogue of the classical Wiener-
Itô isometry. First we fix some notation, most of which has already been used
in Chapter 1.

Let (Ω,F ,P) be a (sufficiently rich) probability space, let H be a real
separable Hilbert space and let W : H → L2(Ω) be an isonormal Gaussian
process on H, i.e., W is a bounded linear operator from H to L2(Ω) such that
the random variables W (h) are centred Gaussian and satisfy

E(W (h1)W (h2)) = [h1, h2]H , h1, h2 ∈ H.

We assume that F is the σ-field generated by {W (h) : h ∈ H}. We fix an
orthonormal basis (uj)j≥1 of H, and consider the Gaussian sequence defined
by γj := W (uj) for j ≥ 1. For m ≥ 0 we consider the m-th Wiener-Itô chaos

H(m) = lin{Hm(W (h)) : ‖h‖ = 1},

where the closure is taken in L2(Ω). Furthermore, let H s©m be the m-fold
symmetric tensor power which is defined to be the range of the orthogonal
projection P s© ∈ L(H⊗̂m) given by

P s©(h1 ⊗ · · · ⊗ hm) =
1
m!

∑
π∈Sm

hπ(1) ⊗ · · · ⊗ hπ(m), h1, . . . , hm ∈ H,

where Sm is the group of permutations of {1, . . . ,m}.
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Theorem 1.14 asserts that the following orthogonal decomposition holds:

L2(Ω,F ,P) =
⊕
m≥0

H(m).

Moreover, the mapping Φm defined by

Φm : P s©(ui1 ⊗ · · · ⊗ uim) 7→ (i!/m!)1/2Ψi, (11.4)

extends to an isometry from H s©m onto H(m). Recall that Ψi is the generalised
Hermite polynomial defined in Section 11.1, to which we refer for notation.

Let us consider the vector-valued Gaussian chaos

H(m)(E) := lin{f ⊗ x : f ∈ H(m), x ∈ E},

where the closure is taken in L2(Ω;E). The following well-known result is
a consequence of the decoupling result in Theorem 11.1(1) and the Kahane-
Khintchine inequalities. Extensive information on this topic can be found in
the monographs [49, 97].

Proposition 11.4. Let E be a Banach space, let m ≥ 1, and let 1 ≤ p, q <∞.
For all F ∈ H(m)(E) we have

‖F‖Lp(Ω;E) hm,p,q ‖F‖Lq(Ω;E).

Our next goal is the construction of the spaces γ s©m(H,E), which will be
the Banach space substitutes for the symmetric Hilbert space tensor powers
H s©m. We refer to Section 11.1 for the definition of the space γm(H,E). For
T ∈ γm(H,E) we define its symmetrisation P s©T ∈ γm(H,E) by

(P s©T )(h1, . . . , hm) :=
1
m!

∑
π∈Sm

T (hπ(1), . . . , hπ(m)), h1, . . . , hm ∈ H,

and we will say that T ∈ γm(H,E) is symmetric if P s©T = T. The mapping
P s© is easily seen to be a projection in L(γm(H,E)) and we define γ s©m(H,E)
to be its range.

We remark that if K is a Hilbert space, then γ s©m(H,K) is isometrically
isomorphic to the space H s©m⊗̂K, where ⊗̂ denotes the Hilbert space tensor
product.

Now we are ready to state a Banach space-valued extension of the canonical
isometry (11.4).

Theorem 11.5. Let E be a Banach space, let 1 ≤ p < ∞, and let m ≥ 1.
The mapping

(Φm ⊗ I) : P s©(hi1 ⊗ · · · ⊗ him)⊗ x 7→ (i!/m!)1/2Ψi ⊗ x,

extends to a bounded operator (Φm⊗I) : γ s©m(H,E)→ Lp(Ω;E), which maps
γ s©m(H,E) onto H(m)(E). Moreover, we have equivalence of norms

‖(Φm ⊗ I)T‖Lp(Ω;E) hm,p ‖T‖γm(H,E), T ∈ γ s©m(H,E).
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Proof. Let T be a symmetric operator of the form (11.1) and observe that

T =
∑

|i|=m,|i|∞≤n

P s©(ui1 ⊗ · · · ⊗ uim)⊗ xi.

Using (11.2), the decoupling result from Theorem 11.1(1) and the Kahane-
Khintchine inequalities we obtain

E‖(Φm ⊗ I)T‖pE = E
∥∥∥ ∑
|i|=m,|i|∞≤n

(i!/m!)1/2Ψixi

∥∥∥p
E

hm,p E
∥∥∥ ∑
|i|=m,|i|∞≤n

γ
(1)
i1
· . . . · γ(m)

im
xi

∥∥∥p
E

hm,p ‖T‖pγm(H,E).

In view of Proposition 11.4 it is clear that Φm ⊗ I maps γ s©m(H,E) into
H(m)(E). To show that its range is H(m)(E), we observe that Φm ⊗ I(h⊗m ⊗
x) = Hm(W (h)) · x for all h ∈ H with ‖h‖ = 1 and all x ∈ E. Now the result
follows from the norm estimate above and the identity

H(m)(E) = lin{Hm(W (h)) · x : ‖h‖ = 1, x ∈ E},

where the closure is taken in Lp(Ω;E). �

Remark 11.6. In the special case that E = R and p = 2 we recover the classical
Wiener-Itô isometry (see Theorem 1.19).

Remark 11.7. Let m ≥ 1 and let Jm be the orthogonal projection onto H(m).
It is well known that for all 1 < p <∞ the restriction of Jm to Lp(Ω)∩L2(Ω)
extends to a bounded projection on Lp(Ω). A Banach space E is said to be
K-convex if J1 ⊗ I extends to a bounded operator on L2(Ω;E). Actually,
this notion is usually defined using Rademacher instead of Gaussian random
variables, but this does not affect the class of Banach spaces under consider-
ation [63]. It has been shown by Pisier [145] that in this case the operators
Jm ⊗ I (which will be denoted by Jm below) are bounded for all m ≥ 1 and
all 1 < p < ∞. Every UMD space is K-convex. These facts will be used in
Sections 11.4 and 11.5.

11.3 Multiple Wiener-Itô integrals in Banach spaces

As in the previous section we consider a real separable Hilbert space H and an
isometry W : H → L2(Ω) onto a closed linear subspace consisting of Gaussian
random variables.

In addition we assume in this section that H = L2(M,B, µ) for some σ-
finite non-atomic measure space M. We let B0 := {B ∈ B : µ(B) < ∞}. For
A ∈ B0 we write with a slight abuse of notation W (A) := W (1A). In this way
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W defines an L2(Ω)-valued measure on B0 which is called the white noise
based on µ.

Our next goal is to construct multiple stochastic integrals for Banach
space-valued functions. Our construction generalises the well known multiple
stochastic integral for Hilbert space-valued functions, and in another direc-
tion, the (single) stochastic integral for Banach space-valued functions which
has been constructed in [135].

For fixed m ≥ 1 we define Em(E) to be the linear space of tetrahedral
simple functions F : Mm → R of the form

F =
∑

|i|=m,|i|∞≤n

1Ai1×···×Aim · xi, (11.5)

where the Aj ’s are pairwise disjoint sets in B0, n ≥ 1, and the coefficients
xi ∈ E vanish whenever j(i) > 1 for some j ≥ 1. It is easy to see that such a
function F represents an operator TF ∈ γm(L2(M), E) in the sense described
in Section 11.1, and by taking an orthonormal basis (uj)j≥1 of L2(M) with
uj = µ(Aj)−1/21Aj for j = 1, . . . , n, one can check that

‖TF ‖2γm(L2(M),E) = E
∥∥∥ ∑
|i|=m,|i|∞≤n

γ
(1)
i1
· . . . · γ(m)

im
·

· µ(A1)1/2 · . . . · µ(An)1/2 · xi

∥∥∥2

E
.

(11.6)

We recall that (γ(k)
j )j≥1 are independent Gaussian sequences for k ≥ 1.

Lemma 11.8. The collection of operators represented by functions in Em(E)
is dense in γm(L2(M), E) for all m ≥ 1.

Proof. This follows by reasoning as in the proof of the corresponding scalar-
valued result [138, p.10], taking into account that the measure space M is
non-atomic. �

Suppose that TF ∈ γm(L2(M), E) is represented by a strongly measurable
weakly-L2 function F. Then TF belongs to γ s©m(L2(M), E) if and only if F
agrees µ⊗m-almost everywhere with its symmetrisation F̃ defined by

F̃ (t1, . . . , tm) :=
1
m!

∑
π∈Sm

F (tπ(1), . . . , tπ(m)).

For F ∈ Em(E) of the form (11.5) we define the multiple Wiener-Itô integral
Im(F ) ∈ L2(Ω;E) by

Im(F ) =
∑

|i|=m,|i|∞≤n

W (Ai1) · . . . ·W (Aim) · xi. (11.7)
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One easily checks that this definition does not depend on the representation
of F as an element of Em(E). Moreover, Im is linear and Im(F ) = Im(F̃ ). The
next theorem may be considered as a generalisation of the classical Wiener-
Itô-isometry for multiple stochastic integrals to the Banach space setting.

Theorem 11.9. Let m ≥ 1 and 1 ≤ p < ∞. The operator Im : Em(E) →
Lp(Ω;E) extends uniquely to a bounded operator

Im : γm(L2(M), E)→ Lp(Ω;E)

which maps γm(L2(M), E) onto H(m)(E). Moreover, for F ∈ γm(L2(M), E)
we have:

(i) ImF = ImF̃ ;
(ii) ‖ImF‖Lp(Ω;E) hm,p ‖F̃‖γm(L2(M),E) ≤ ‖F‖γm(L2(M),E).

Proof. First we show that for all F ∈ Em(E) the following equivalence of
norms holds:

‖ImF‖Lp(Ω;E) hm,p ‖F̃‖γm(L2(M),E).

For that purpose we take F ∈ Em(E) of the form (11.5). Since Im(F ) = Im(F̃ )
we may assume that F is symmetric, hence x(iπ(1),...,iπ(m)) = x(i1,...,im) for all
permutations π ∈ Sm. Let (uj)j≥1 be an orthonormal basis of L2(M) with
uj = µ(Aj)−1/21Aj for j = 1, . . . , n, and let (γj)j≥1 be the Gaussian se-
quence γj = W (uj) for j ≥ 1. Using the decoupling inequalities from Theorem
11.1(2), (11.6), and the Kahane-Khintchine inequalities we obtain

‖ImF‖pLp(Ω;E) = E
∥∥∥ ∑
|i|=m,|i|∞≤n

W (Ai1) · . . . ·W (Aim) · xi

∥∥∥p
E

= E
∥∥∥ ∑
|i|=m,|i|∞≤n

γi1 · . . . · γim · µ(A1)1/2 · . . . · µ(An)1/2 · xi

∥∥∥p
E

hm,p E
∥∥∥ ∑
|i|=m
|i|∞≤n

γ
(1)
i1
· . . . · γ(m)

im
· µ(A1)1/2 · . . . · µ(An)1/2 · xi

∥∥∥p
E

hm,p ‖F‖pγm(L2(M),E).

Now the first claim follows from Lemma 11.8. To prove that ImT ∈ H(m)(E)
for all T ∈ γm(L2(M), E) we first let T = TF for some tetrahedral function
F of the form (11.5). It follows from (11.7) and the fact that

W (Aj1) · . . . ·W (Ajm) ∈ H(m)

whenever all jk’s are different, that ImT ∈ H(m)(E). Since Im is continuous
the same holds for general T ∈ γm(L2(M), E) by Lemma 11.8. To show that
the mapping Im : γm(L2(M), E) → H(m)(E) is surjective we proceed as in
Theorem 11.5. The other statements are clear in view of Lemma 11.8. �
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11.4 The Malliavin derivative

In this section we study a vector-valued analogue of the Malliavin derivative.
Consider a complete probability space (Ω,F ,P), a real separable Hilbert space
H, and an isonormal Gaussian process W : H → L2(Ω). As before we assume
that F is the σ-algebra generated by W.

Let us introduce some notation. For n ≥ 1 we denote by C∞pol(Rn) the
vector space of all C∞-functions f : Rn → R such that f and its partial
derivatives of all orders have polynomial growth, i.e. for every multi-index α
there exist positive constants Cα, pα such that

|∂αf(x)| ≤ Cα(1 + |x|)pα .

Let S be the collection of all random variables f : Ω → R of the form

f = ϕ(W (h1), . . . ,W (hn)) (11.8)

for some ϕ ∈ C∞pol(Rn), h1, . . . , hn ∈ H and n ≥ 1.
For a real Banach space E we consider the dense subspace S (E) of

Lp(Ω;E), 1 ≤ p <∞, consisting of all functions F : Ω → E of the form

F =
n∑
i=1

fi · xi,

where fi ∈ S and xi ∈ E, i = 1, . . . n. Occasionally it will be convenient to
work with the space P(E), which is defined similarly, except that the functions
ϕ are required to be polynomials.

For a function F = f · x ∈ S (E) with f of the form (11.8) we define its
Malliavin derivative DF by

DF =
n∑
j=1

∂jϕ(W (h1), . . . ,W (hn))hj ⊗ x. (11.9)

This definition extends to S (E) by linearity. For F ∈ S (E) the Malliavin
derivative DF is a random variable which takes values in the algebraic tensor
product H ⊗E, which we endow with the norm ‖ · ‖γ(H,E) (cf. Section 11.1).

The following result is the simplest case of the integration by parts formula.
We omit the proof, which is the same as in the scalar-valued case [138, Lemma
1.2.1].

Lemma 11.10. If F ∈ S (E), then E(DF (h)) = E(W (h)F ) for all h ∈ H.

A straightforward computation shows that the following product rule
holds:

D〈F,G〉 = 〈DF,G〉+ 〈F,DG〉, F ∈ S (E), G ∈ S (E∗).
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Here 〈·, ·〉 denotes the duality between E and E∗. Combining this with Lemma
11.10 we obtain the following integration by parts formula:

E〈DF (h), G〉 = E(W (h)〈F,G〉)− E〈F,DG(h)〉, F ∈ S (E), G ∈ S (E∗).
(11.10)

This identity is the main ingredient in the proof of the following result.

Proposition 11.11. The Malliavin derivative D is closable as an operator
from Lp(Ω;E) into Lp(Ω; γ(H,E)) for all 1 ≤ p <∞.

Proof. Let (Fn) be a sequence in S (Ω)⊗E be such that Fn → 0 in Lp(Ω;E)
and DFn → X in Lp(Ω; γ(H,E)) as n→∞. We must prove that X = 0.

Fix h ∈ H and define

Vh := {G ∈ S (Ω)⊗ E∗ : W (h)G ∈ S (Ω)⊗ E∗}.

We claim that Vh is weak∗-dense in (Lp(Ω;E))∗. Let 1
p + 1

q = 1. To prove
this it suffices to note that the subspace {G ∈ S (Ω) : W (h)G ∈ S (Ω)} is
weak∗-dense in Lq(Ω) and that Lq(Ω)⊗ E∗ is weak∗-dense in (Lp(Ω;E))∗.

Fix G ∈ Vh. Using (11.10) and the fact that the mapping Y 7→ E〈Y (h), G〉
defines a bounded linear functional on Lp(Ω; γ(H,E)) we obtain

E〈X(h), G〉 = lim
n→∞

E〈DFn(h), G〉 = lim
n→∞

E(W (h)〈Fn, G〉)− E〈Fn, DG(h)〉.

Since W (h)G and DG(h) are bounded it follows that this limit equals zero.
Since Vh is weak∗-dense in (Lp(Ω;E))∗, we obtain that X(h) vanishes almost
surely. Now we choose an orthonormal basis (hj)j≥1 of H. It follows that
almost surely we have X(hj) = 0 for all j ≥ 1. Hence, X = 0 almost surely. �

With a slight abuse of notation we will denote the closure of D again by
D. Its domain in Lp(Ω;E) will be denoted by D1,p(Ω;E), which is a Banach
space endowed with the norm

‖F‖D1,p(Ω;E) :=
(
‖F‖pLp(Ω;E) + ‖DF‖pLp(Ω;γ(H,E))

)1/p
.

Furthermore we will write D1,p(Ω) := D1,p(Ω; R).
Derivatives of higher order are defined inductively. For n ≥ 1 we define

Dn+1,p(Ω;E) :={F ∈ Dn,p(Ω;E) : DnF ∈ D1,p(Ω; γn(H,E))},
Dn+1F :=D(DnF ), F ∈ Dn+1,p(Ω;E).

It follows from Proposition 11.11 that Dn is a closed and densely defined
operator from Dn−1,p(Ω;E) into Lp(Ω; γn(H,E)). Its domain is denoted by
Dn,p(Ω;E) which is a Banach space endowed with the norm

‖F‖n,p := ‖F‖Dn,p(Ω;E) :=
(
‖F‖pLp(Ω;E) +

n∑
k=1

‖DkF‖p
Lp(Ω;γk(H,E))

)1/p

.
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The main result in this section describes the behaviour of the Malliavin deriva-
tive on the E-valued Wiener-Itô chaoses. It extends [138, Proposition 1.2.2] to
Banach spaces (and to 1 ≤ p <∞, but this is well-known in the scalar case).

Theorem 11.12. Let E be a Banach space, let 1 ≤ p < ∞ and let m ≥ 1.
Then we have H(m)(E) ⊆ D1,p(Ω;E) and D(H(m)(E)) ⊆ H(m−1)(γ(H,E)).
Moreover, the following equivalence of norms holds:

‖DF‖Lp(Ω;γ(H,E)) hp,m ‖F‖Lp(Ω;E), F ∈ H(m)(E).

Proof. Let (uj)j≥1 be an orthonormal basis of H and put γj := W (uj). Let
(γ(k)
j )j≥1 and (γ̃j)j≥1 be independent copies of (γj)j≥1. For i = (i1, . . . , im)

and k ≥ 1 we will write (i, k) = (i1, . . . , im, k).
First we take F ∈ H(m)(E) of the form

F =
∑

|i|=m,|i|∞≤n

i!
m!1/2

n∏
j=1

Hj(i)(γj)xi.

Clearly we may assume without loss of generality that the coefficients xi are
symmetric, i.e. xi = xi′ whenever i′ is a permutation of i.

It follows from Theorem 11.1(1) that

E‖F‖pE = E
∥∥∥∥ ∑
|i|=m,|i|∞≤n

i!
m!1/2

n∏
j=1

Hj(i)(γj)xi

∥∥∥∥p
E

hm,p E
∥∥∥∥ ∑
|i|=m

γ
(1)
i1
· . . . · γ(m)

im
xi

∥∥∥∥p
E

.

(11.11)

On the other hand, by a change of variables to modify the range of summation
from {|i| = m} to {|i| = m − 1}, and rearranging terms, we obtain with the
convention that H−1 = 0,

DF =
∑

|i|=m,|i|∞≤n

i!
m!1/2

n∑
k=1

∏
j 6=k

Hj(i)(γj)Hk(i)−1(γk) · uk ⊗ xi,

=
n∑
k=1

uk ⊗
(
m1/2

∑
|i|=m−1,|i|∞≤n

i!
(m−1)!

n∏
j=1

Hj(i)(γj)x(i,k)

)

=
n∑
k=1

uk ⊗
(

m1/2

(m−1)!1/2

∑
|i|=m−1,|i|∞≤n

i!1/2

(m−1)!1/2
Ψix(i,k)

)
.

Using the Kahane-Khintchine inequalities and Theorem 11.1(1) once more,
we find
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E‖DF‖pγ(H,E) hp EẼ
∥∥∥ n∑
k=1

γ̃kDF (uk)
∥∥∥p
E

= EẼ
∥∥∥ m1/2

(m−1)!1/2

n∑
k=1

γ̃k
∑

|i|=m−1,|i|∞≤n

i!1/2

(m−1)!1/2
Ψix(i,k)

∥∥∥p
E

= ẼE
∥∥∥ m1/2

(m−1)!1/2

∑
|i|=m−1,|i|∞≤n

i!1/2

(m−1)!1/2
Ψi

( n∑
k=1

γ̃kx(i,k)

)∥∥∥p
E

hm,p ẼE
∥∥∥ ∑
|i|=m−1,|i|∞≤n

n∑
k=1

γ
(1)
i1
· . . . · γ(m−1)

im−1
γ̃kx(i,k)

∥∥∥p
E
.

(11.12)
Comparing (11.11) and (11.12) yields the norm estimate. The theorem follows
by the closedness of D and the fact that functions F of the form considered
above are dense in H(m)(E). �

Remark 11.13. In the special case where E is a UMD Banach space the result
above is known. Indeed, it follows from Meyer’s inequalities (Theorem 11.16
below) that

‖DF‖Lp(Ω;γ(H,E)) hp,E m1/2‖F‖Lp(Ω;E), F ∈ H(m)(E).

This formula gives an explicit dependence on m, but in contrast with Theorem
5.3 the constants depend on (the Hilbert transform constants of) E. We return
to this observation in Section 11.5.

11.5 Meyer’s inequalities and their consequences

Let (P (t))t≥0 ⊆ L(L2(Ω)) be the Ornstein-Uhlenbeck semigroup defined by

P (t) :=
∑
m≥0

e−mtJm. (11.13)

As is well known, this semigroup extends to a C0-semigroup of positive con-
tractions on Lp(Ω) for all 1 ≤ p <∞. We refer the reader to [138] for proofs
of these and other elementary properties.

Let E be an arbitrary Banach space. By positivity of P , (P (t) ⊗ I)t≥0

extends to a C0-semigroup of contractions on the Lebesgue-Bochner spaces
Lp(Ω;E) for 1 ≤ p <∞ which will be denoted by (PE(t))t≥0. The domain in
Lp(Ω;E) of its infinitesimal generator LE is denoted Dp(LE). The subordi-
nated semigroup (QE(t))t≥0 is defined by

QE(t)f :=
∫ ∞

0

PE(s)f dνt(s), (11.14)

where the probability measure νt is given by
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dνt(s) =
t

2
√
πs3

e−t
2/4s ds, t > 0. (11.15)

The generator of (QE(t))t≥0 will be denoted by CE . As is well known we have

CE = −(−LE)1/2.

Often, when there is no danger of confusion, we will omit the subscripts E.
The next lemma is a vector-valued analogue of the representation of L as

a generator associated with a Dirichlet form. We omit the proof which follows
from the scalar-valued analogue in a straightforward way.

Lemma 11.14. Let E be a UMD space. For all F ∈ P(E) and G ∈
D1,p(Ω;E∗) we have

E〈LEF,G〉 = −E[DF,DG]γ .

In the following Lemma we collect some useful commutation relations,
which follow easily from the corresponding scalar-valued results.

Lemma 11.15. Let E be a Banach space and let 1 ≤ p <∞.

(i) For F ∈ D1,p(Ω;E) we have PE(t)F, QE(t)F ∈ D1,p(Ω;E) and

DPE(t)f = e−tPγ(H,E)DF, DQE(t)f = Q
(1)
γ(H,E)DF,

where Q(1)
γ(H,E) is the semigroup generated by −(I − Lγ(H,E))1/2.

(ii) For F ∈ P(E) we have LEF, CEF ∈ D1,p(Ω;E) and

DLEF = −(I − Lγ(H,E))DF, DCEF = −(I − Lγ(H,E))1/2DF.

Pisier proved in [146] that Meyer’s inequalities extend to UMD spaces.
Using γ-norms his result result can be formulated as follows.

Theorem 11.16 (Meyer’s inequalities). Let E be a UMD space and let
1 < p < ∞. Then Dp(CE) = D1,p(Ω;E) and for all f ∈ D1,p(Ω;E) the
following two-sided estimate holds:

‖CEf‖Lp(Ω;E) hp,E ‖Df‖Lp(Ω;γ(H,E)). (11.16)

In Theorem 11.21 we shall state an extension of this result.
The following lemma is the crucial ingredient in the proof of Meyer’s mul-

tiplier Theorem. The proof in the scalar case in [138, Lemma 1.4.1] does not
extend to the vector-valued setting, since it depends heavily on the Hilbert
space structure of L2(Ω). We give a simple proof in the case that E is a
UMD space, which is based on Meyer’s inequalities. Recall that Jm denotes
the chaos projection considered in Remark 11.7.
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Lemma 11.17. Let 1 < p < ∞ and let E be a UMD space. For each N ≥ 1
and t > 0 we have

‖P (t)(I − J0 − J1 − . . .− JN−1)‖L(Lp(Ω;E)) .E,p,N e−Nt.

Proof. For F ∈ P(E) we set

RF = D

∞∑
m=1

m−1/2JmF, S
(
D

∞∑
m=0

JmF
)

:=
∞∑
m=1

m1/2JmF.

Note that the sums consists of finitely many terms since F ∈ P(E). Both
operators are well-defined and Lp-bounded by Theorem 11.16. Using the fact
that

SNRNF =
∞∑

m=N

JmF,

we obtain by Lemma 11.15 and Theorem 11.16,

‖P (t)(I − J0 − J1 − . . .− JN−1)F‖Lp(Ω;E)

=
∥∥∥ ∞∑
m=N

e−mtJmF
∥∥∥
Lp(Ω;E)

= ‖SNRNP (t)F‖Lp(Ω;E)

= ‖SNe−NtP (t)RNF‖Lp(Ω;E) ≤ e−Nt‖S‖N‖R‖N‖F‖Lp(Ω;E).

�

Using this lemma, the remainder of the proof of Meyer’s multiplier Theo-
rem [128] in the scalar case as given in [138, Theorem 1.4.2] extends verbatim
to the vector-valued setting. It is even possible to allow operator-valued mul-
tipliers.

Theorem 11.18 (Meyer’s Multiplier Theorem). Let 1 < p < ∞, let E
be a UMD space, and let (ak)∞k=0 ⊆ L(Lp(Ω;E)) be a sequence of bounded
linear operators such that

∑∞
k=0 ‖ak‖L(Lp(Ω;E))N

−k < ∞ for some N ≥ 1.
If (φ(n))n≥0 ⊆ L(Lp(Ω;E)) is a sequence of operators satisfying φ(n) :=∑∞
k=0 akn

−k for n ≥ N, then the operator Tφ defined by

TφF :=
∞∑
n=0

φ(n)JnF, F ∈ P(E)

extends to a bounded operator on Lp(Ω;E).

As a first application of the multiplier theorem we determine the spectrum
of L. We start with a simple but useful lemma.

Lemma 11.19. Let E be a K-convex Banach space, let 1 < p < ∞, and let
F ∈ Lp(Ω;E) such that JmF = 0 for all m ≥ 0. Then F = 0 in Lp(Ω;E).
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Proof. For G ∈ P(E∗) we have

E〈F,G〉 = E〈F,
∑
m≥0

JmG〉 = E〈
∑
m≥0

JmF,G〉 = 0.

This implies the result, since P(E∗) is dense in Lq(Ω;E∗), hence weak∗-dense
in Lp(Ω;E)∗.

�

Proposition 11.20. Let 1 < p <∞ and let E be a UMD space. Then

σ(−L) = {0, 1, 2, . . .}.

Moreover, every integer m ≥ 0 is an eigenvalue of −L and ker(m + L) =
H(m)(E).

Proof. To prove that {0, 1, 2, . . .} ⊆ σ(−L) we take an integer m ≥ 0 and a
non-zero F ∈ H(m)(E). Since P (t)F = e−mtF it follows that F ∈ Dp(L) and
(m+ L)F = 0, hence m ∈ σ(−L) and ker(m+ L) ⊇ H(m)(E).

To show the converse inclusion for the spectrum, take λ ∈ C\{0, 1, 2, . . .}.
To prove that λ+L is injective, take F ∈ ker(λ+L). Since Jm is bounded for
m ≥ 0 by Remark 11.7 (UMD spaces are K-convex), it follows that JmLF =
LJmF = −mJmF. This implies that (λ−m)JmF = Jm(λ+ L)F = 0, hence
JmF = 0 for all m ≥ 0, so that F = 0 by Lemma 11.19.

To prove surjectivity, we conclude from the Multiplier Theorem 11.18 that

Rλ :=
∞∑
m=0

1
λ−m

Jm

extends to a bounded operator on Lp(Ω;E). Using the fact that L is closed,
we infer that (λ+ L)Rλ = I, hence λ+ L is surjective.

It remains to show that ker(m + L) ⊆ H(m)(E) for all m ≥ 0. Take
F ∈ ker(m+ L). Since

(m− k)JkF = (m+ L)JkF = Jk(m+ L)F = 0

for all integers k ≥ 0, we have JkF = 0 for all k 6= m. This implies that
Jk(F − JmF ) = 0, hence F = JmF ∈ H(m)(E) by Lemma 11.19.

�

Next we give the general form of Meyer’s inequalities in the language of
γ-radonifying norms. This result is stated in a slightly different setting in
[112, Theorem 1.17], but the proof given there contains a gap. More precisely,
the last formula for the function ψ defined in [112, p.300] should be replaced
by ψ(t) = 1

2e
−t/2(I0( t2 ) + I1( t2 )). This function however is not contained in

L1(0,∞); but this is needed to conclude the proof.
The proof given below uses Lemma 11.17, which is based on the first order

Meyer inequalities from Theorem 11.16. This allows us to adapt the argument
in the scalar case from [138, Theorem 1.5.1].
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Theorem 11.21 (Meyer’s inequalities, general case). Let E be a UMD
space, let 1 < p < ∞ and let n ≥ 1. Then Dp(Cn) = Dn,p(Ω;E), and for all
F ∈ Dn,p(Ω;E) we have

‖DnF‖Lp(Ω;γn(H,E)) .p,E,n ‖CnF‖Lp(Ω;E)

.p,E,n ‖F‖Lp(Ω;E) + ‖DnF‖Lp(Ω;γn(H,E)).
(11.17)

Proof. The proof proceeds by induction. The case n = 1 has been treated in
Theorem 11.16. Suppose that (11.17) holds for some n ≥ 1. Using Lemma
11.15 and the fact that the operator Cn(I −L)−n/2 = (−L)n/2(I −L)−n/2 is
bounded on Lp(Ω;E) we obtain by the induction hypothesis

E‖Dn+1F‖pγn+1(H,E) .p,E,n E‖CnDF‖pγ(H,E) .p,E,n E‖(I − L)n/2DF‖pγ(H,E)

= E‖DCnF‖pγ(H,E) hp,E E‖Cn+1F‖pE .

To prove the second inequality, we note that according to Remark 11.7,

‖Cn(J0 + . . .+ Jn−1)F‖p .p,E,n ‖F‖p, F ∈ Lp(Ω;E).

Therefore it suffices to show by induction that

‖CnF‖Lp(Ω;E) .p,E,n ‖DnF‖Lp(Ω;γn(H,E))

for all F ∈ P(E) with J0F = . . . = Jn−1F = 0.
Let us assume that this statement holds for some n ≥ 1 and take F ∈ P(E)

satisfying J0F = . . . = JnF = 0. It follows from Lemma 11.17 that (P (t))t≥0

restricts to a C0-semigroup (Pn(t))t≥0 on

Xn,p(E) :=
⊕
m≥n

H(m)(E)
Lp(Ω;E)

,

satisfying the growth bound ‖Pn(t)‖L(Xn,p(E)) .E,p,n e−nt for some constant
K depending on n. Consequently (see e.g., [7, Proposition 3.8.2]), we have

‖(α− L)1/2F‖p hp,E ‖(β − L)1/2F‖p, F ∈ Xn,p(E),

for all α, β > −n, and in particular is (I − L)1/2C−1 bounded on Xn,p(E).
Using Lemma 11.15 and the fact that CnDF ∈ Xn,p(γ(H,E)), it follows that

E‖Cn+1F‖pE hp,E E‖DCnF‖pγ(H,E) = E‖(I − L)n/2DF‖pγ(H,E)

.p,E,n ‖(I − L)n/2C−n‖pL(Xn,p(γ(H,E)))E‖C
nDF‖pγ(H,E)

hp,E,n E‖Dn+1F‖pγn+1(H,E).

�
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As an application of Meyer’s inequalities we will show that γ(H,E)-valued
Malliavin differentiable random variables are contained in the domain of the
divergence operator δ. First we give the precise definition of δ.

Fix an exponent 1 < p < ∞ and let 1
p + 1

q = 1. For the moment let D
denote the Malliavin derivative on Lq(Ω;E∗), which is a densely defined closed
operator with domain D1,q(Ω;E∗) and taking values in Lq(Ω; γ(H,E∗)). We
let the domain Dp(δ) consist of all u ∈ Lp(Ω; γ(H,E)) for which there exists
an Fu ∈ Lp(Ω;E) such that

E[u,DG]γ = E〈Fu, G〉 for all G ∈ D1,q(Ω;E∗).

The function Fu, if it exists, is uniquely determined. We set

δ(u) := Fu, X ∈ Dp(δ). (11.18)

In other words, δ is the part of the adjoint operator D∗ in Lp(Ω; γ(H,E))
which maps into Lp(Ω;E). Here we identify Lp(Ω; γ(H,E)) and Lp(Ω;E) in
a natural way with subspaces of (Lq(Ω; γ(H,E∗)))∗ and (Lq(Ω;E∗))∗ respec-
tively.

The divergence operator δ is easily seen to be closed and densely defined.
The proof of the following result is a variation of the proof of the scalar-valued
result in [138, Proposition 1.5.4].

Proposition 11.22. Let 1 < p <∞ and let E be a UMD space. The operator
δ is bounded from D1,p(Ω; γ(H,E)) into Lp(Ω;E).

Proof. Let u ∈ D1,p(Ω; γ(H,E)) and G ∈ P(E∗). Using Theorem 11.12 we
find that ‖DJ1G‖p hp ‖J1G‖p, and therefore

|E[u,D(J0 + J1)G]γ | ≤ ‖u‖Lp(Ω;γ(H,E))‖D(J0 + J1)G‖Lq(Ω;γ(H,E∗))

.p,E ‖u‖Lp(Ω;γ(H,E))‖G‖Lq(Ω;E∗).
(11.19)

Now we assume that J0G = J1G = 0. By the Multiplier Theorem 11.18 the
operator

T :=
∞∑
m=2

m

m− 1
Jm

is bounded on Lp(Ω; γ(H,E)). By Lemma 11.17 the operator L−1 is well
defined on X1,p(E), where we use the notation from the proof of Theorem
11.21. This justifies the use of L−1 in the following computation. Using Lemma
11.14 and Theorem 11.21 we obtain

|E[u,DG]γ | = |E[u, LL−1DG]γ | = |E[Du,DL−1DG]γ |
≤ ‖Du‖Lp(Ω;γ2(H,E))‖DL−1DG‖Lq(Ω;γ2(H,E∗))

= ‖Du‖Lp(Ω;γ2(H,E))‖D2L−1TG‖Lq(Ω;γ2(H,E∗))

.p,E ‖Du‖Lp(Ω;γ2(H,E))‖G‖Lq(Ω;E∗).

(11.20)
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Combining (11.19) and (11.20) we conclude that for all G ∈ P(E∗) we have

|E[u,DG]γ | .p,E ‖u‖D1,p(Ω;E)‖G‖Lq(Ω;E∗).

It follows that there exists an Fu ∈ (Lq(Ω;E∗))∗ such that E[u,DG]γ =
E〈Fu, G〉. Since E is a UMD space, we conclude that Fu ∈ Lp(Ω;E) and we
obtain the desired result. �

For 1 ≤ p <∞ we define the vector space of exact E-valued processes as

Lpe(Ω; γ(H,E)) = {DF : F ∈ D1,p(Ω;E)}.

The next result is concerned with the representation of random variables as
divergences of exact processes.

Proposition 11.23. Let E be a UMD space, let 1 < p < ∞, and let
F ∈ Lp(Ω;E). Then U := DL−1(F − E(F )) is the unique element in
Lpe(Ω; γ(H,E)) satisfying

F = E(F ) + δ(U).

Proof. By an easy computation we see that

F = E(F ) + δD(L−1(F − E(F ))) (11.21)

for all F ∈ P(E). It follows from Lemma 11.17 (or Proposition 11.20) that
L−1 is well-defined and bounded on {G ∈ Lp(Ω;E) : E(G) = 0}. Meyer’s
inequalities imply that D is bounded from Dp(L) into D1,p(Ω; γ(H,E)), and
by Proposition 11.22 we have that δ is bounded from D1,p(Ω; γ(H,E)) into
Lp(Ω;E). Using these facts and an approximation argument with elements
from P(E) we conclude that the right hand side of (11.21) is well-defined for
all F ∈ Lp(Ω;E), and the identity remains valid.

To prove uniqueness, suppose that F = E(F ) + δ(DF ′) for some F ′ ∈
D1,p(Ω;E) with DF ′ ∈ Dp(δ), and put G := F ′ − L−1(F − E(F )). Then
δDG = 0, hence 〈G,LP 〉 = 0 for all polynomials P ∈ P(E∗). In particular,
for all m ≥ 1 and all P ∈ P(E∗) ∩H(m)(E∗) one has 〈G,mP 〉 = 0, and since
P(E∗) ∩H(m)(E∗) is dense in H(m)(E∗), we have 〈JmG, F̃ 〉 = 〈G, JmF̃ 〉 = 0
for all F̃ ∈ Lq(Ω;E∗). It follows that JmG = 0 for all m ≥ 1, which implies
Jm(G − J0G) = 0 for all m ≥ 0. We conclude that G = J0G by Lemma
11.19, hence F ′ = L−1(F − EF ) + x for some x ∈ E. We conclude that
DF ′ = DL−1(F − EF ), which is the desired identity. �

We conclude the chapter with an application of the vector-valued Malliavin
calculus developed in this work. We give a new proof of Theorem 11.1(1) under
the additional assumption that E is a UMD space, which is based on Meyer’s
inequalities. This approach seems to be new even in the scalar-valued case.
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Theorem 11.24. Let E be a UMD space, let 1 < p < ∞, and define F and
F̃ as in Theorem 11.1(1). Then we have

‖F‖p hp,m,E ‖F̃‖p.

Proof. We argue as in the proof of Theorem 11.12. By (11.11) we have

E‖F‖pE = E
∥∥∥∥ ∑
|i|=m,|i|∞≤n

i!1/2

m!1/2
Ψixi

∥∥∥∥p
E

and according to (11.12),

E‖DF‖pγ(H,E) hp ẼE
∥∥∥∥ m1/2

(m−1)!1/2

∑
|i|=m−1,|i|∞≤n

i!1/2

(m−1)!1/2
Ψi

( n∑
k=1

γ̃kx(i,k)

)∥∥∥∥p
E

.

Noting that CF = m1/2F, Meyer’s inequalities imply that

E
∥∥∥∥ ∑
|i|=m,|i|∞≤n

i!1/2

m!1/2
Ψixi

∥∥∥∥p
E

hp,m,E ẼE
∥∥∥∥ ∑
|i|=m−1,|i|∞≤n

i!1/2

(m−1)!1/2
Ψi

( n∑
k=1

γ̃kx(i,k)

)∥∥∥∥p
E

.

The desired result is obtained by repeating this procedure m− 1 times. �
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The Clark-Ocone Formula

Let H be a separable real Hilbert space, let T > 0, and let F = (Ft)t∈[0,T ]

be the augmented filtration generated by an H -cylindrical Brownian motion
(WH (t))t∈[0,T ] on a probability space (Ω,F ,P). In this chapter we will prove
that if E is a UMD Banach space, 1 ≤ p < ∞, and F ∈ D1,p(Ω;E) is FT -
measurable, then

F = E(F ) +
∫ T

0

PF(DF ) dWH ,

where D is the Malliavin derivative of F and PF is the projection onto the
F-adapted elements in a suitable Banach space of Lp-stochastically integrable
L(H , E)-valued processes.

12.1 The Skorokhod integral

As in Chapter 11, (Ω,F ,P) is a complete probability space, H is a separable
real Hilbert space, and W : H → L2(Ω) is an isonormal Gaussian process.
We assume that F is the σ-field generated by {W (h) : h ∈ H}.

The Malliavin derivative acting on possibly vector-valued functions will
be denoted by D. We collect some versions of the product rule which will be
useful below.

Proposition 12.1. Let 1 ≤ p, q, r <∞ such that 1
p + 1

q = 1
r .

(i) For all F ∈ D1,p(Ω;E) and G ∈ D1,q(Ω;E∗) we have 〈F,G〉 ∈ D1,r(Ω)
and

D〈F,G〉 = 〈DF,G〉+ 〈F,DG〉.

(ii) For all F ∈ D1,p(Ω) and G ∈ D1,q(Ω;E) we have FG ∈ D1,r(Ω;E) and

D(FG) = F DG+DF ⊗G.
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(iii) For all F ∈ D1,p(Ω;E) and G ∈ D1,q(Ω;E∗) and h ∈ H we have
〈DF (h), G〉 ∈ Lr(Ω) and

E〈DF (h), G〉 = E(W (h)〈F,G〉)− E〈F,DG(h)〉.

We continue with a useful Lemma concerning the divergence operator,
which has already introduced in (11.18).

Lemma 12.2. We have S (Ω)⊗ γ(H,E) ⊆ Dp(δ) and

δ(f ⊗R) =
∑
j≥1

W (hj)f ⊗Rhj −R(Df), f ∈ S (Ω), R ∈ γ(H,E).

Here (hj)j≥1 denotes an arbitrary orthonormal basis of H.

Proof. For f ∈ S (Ω), R ∈ γ(H,E), and G ∈ S (Ω) ⊗ E∗ we obtain, using
the integration by parts formula (11.10) (or Proposition 12.1(iii)),

E〈f ⊗R,DG〉 =
∑
j≥1

E〈f ⊗Rhj , DG(hj)〉

=
∑
j≥1

E(W (hj)〈f ⊗Rhj , G〉)− E〈[Df, hj ]H ⊗Rhj , G〉

= E
〈∑
j≥1

W (hj)f ⊗Rhj −
∑
j≥1

[Df, hj ]H ⊗Rhj , G
〉

= E
〈∑
j≥1

W (hj)f ⊗Rhj −R(Df), G
〉
.

The sum
∑
j≥1W (hj)f ⊗ Rhj converges in Lp(Ω;E). This follows from the

Kahane-Khintchine inequalities and the fact that (W (hj))j≥1 is a sequence of
independent standard Gaussian variables; note that the function f is bounded.

�

We shall now assume that H = L2(0, T ; H ), where T is a fixed positive
real number and H is a separable real Hilbert space. We will show that if the
Banach space E is a UMD space, the divergence operator δ is an extension
of the stochastic integral for adapted L(H , E)-valued processes constructed
recently in [134]. Let us start with a summary of its construction.

Let WH = (WH (t))t∈[0,T ] be an H -cylindrical Brownian motion on
(Ω,F ,P), i.e., for each t ∈ [0, T ], WH (t) is a bounded linear operator from
H into L2(Ω) having the following properties:

(1) WH h := (WH (t)h)t∈[0,T ] is a real-valued Brownian motion for all h ∈H ;
(2) E(WH (s)g ·WH (t)h) = (s ∧ t)[g, h] for all s, t ∈ [0, T ] and g, h ∈H .

We shall assume that WH is adapted to a filtration F = (Ft)t∈[0,T ] satisfying
the usual conditions, i.e., WH h is adapted to F each h ∈H . The Itô isometry
defines an isonormal process W : L2(0, T ; H )→ L2(Ω) by
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W (φ) :=
∫ T

0

φdWH , φ ∈ L2(0, T ; H ).

Following [134] we say that a process X : (0, T ) × Ω → γ(H , E) is an
elementary adapted process with respect to the filtration F if it is of the form

X(t, ω) =
m∑
i=1

n∑
j=1

1(ti−1,ti](t)1Aij (ω)
l∑

k=1

hk ⊗ xijk, (12.1)

where 0 ≤ t0 < · · · < tn ≤ T , the sets Aij ∈ Fti−1 are disjoint for each j,
and hk, . . . , hk ∈H are orthonormal. The stochastic integral with respect to
WH of such a process is defined by

I(X) :=
∫ T

0

X dWH :=
m∑
i=1

n∑
j=1

l∑
k=1

1Aij (WH (ti)hk −WH (ti−1)hk)⊗ xijk,

Elementary adapted processes define elements of Lp(Ω; γ(L2(0, T ; H ), E))
in a natural way. The closure of these elements in Lp(Ω; γ(L2(0, T ; H ), E))
is denoted by LpF(Ω; γ(L2(0, T ; H ), E)).

Proposition 12.3 ([134, Theorem 3.5]). Let E be a UMD space and let
1 < p <∞. The stochastic integral uniquely extends to a bounded operator

I : LpF(Ω; γ(L2(0, T ; H ), E))→ Lp(Ω;E).

Moreover, for all X ∈ LpF(Ω; γ(L2(0, T ; H ), E)) we have the two-sided esti-
mate

‖I(X)‖Lp(Ω;E) h ‖X‖Lp(Ω;γ(L2(0,T ;H ),E)),

with constants only depending on p and E.

A consequence of this result is the following lemma, which will be useful
in the proof of Theorem 12.12.

Lemma 12.4. Let E be a UMD space and let 1 < p, q <∞ satisfy 1
p + 1

q = 1.
For all X ∈ LpF(Ω; γ(L2(0, T ; H ), E)) and Y ∈ LqF(Ω; γ(L2(0, T ; H ), E∗)) we
have

E〈I(X), I(Y )〉 = E〈X,Y 〉.

Proof. When X and Y are elementary adapted the result follows by direct
computation. The general case follows from Proposition 12.3 applied to E
and E∗, noting that E∗ is a UMD space as well. �

In the next approximation result we identify L2(0, t; H ) with a closed
subspace of L2(0, T ; H ). The simple proof is left to the reader.
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Lemma 12.5. Let 1 ≤ p <∞, let 0 < t ≤ T, and let (ψn)n≥1 be an orthonor-
mal basis of L2(0, t; H ). The linear span of the functions

f(W (ψ1), . . . ,W (ψn))⊗ (h⊗ x),

with f ∈ S (Ω), h ∈ H, x ∈ E, is dense in Lp(Ω,Ft; γ(H , E)).

The next result shows that the divergence operator δ is an extension of the
stochastic integral I. This means that δ is a vector-valued Skorokhod integral.

Theorem 12.6. Let E be a UMD space and let 1 < p <∞ be fixed. The space
LpF(Ω; γ(L2(0, T ; H ), E)) is contained in Dp(δ) and

δ(X) = I(X) for all X ∈ LpF(Ω; γ(L2(0, T ; H ), E)).

Proof. Fix 0 < t ≤ T , let (hk)k≥1 be an orthonormal basis of H , and put
X := 1A

∑n
k=1 hk ⊗ xk with A ∈ Ft and xk ∈ E for k = 1, . . . , n. Let (ψj)j≥1

be an orthonormal basis of L2(0, t; H ). By Lemma 12.5 we can approximate
X in Lp(Ω,Ft; γ(H , E)) with a sequence (Xl)l≥1 in S (Ω, γ(H , E)) of the
form

Xl :=
Ml∑
m=1

flm(W (ψ1), . . . ,W (ψn))⊗ (hm ⊗ xlm)

with xlm ∈ E.
Now let 0 < t < u ≤ T . From ψm ⊥ 1(t,u] ⊗ h in L2(0, T ; H ) it follows

that DXl(1(t,u] ⊗ h) = 0 for all h ∈H . By Lemma 12.2,

1(t,u] ⊗Xl =
Ml∑
m=1

flm(W (ψ1), . . . ,W (ψn))⊗ ((1(t,u] ⊗ hm)⊗ xlm)

belongs to Dp(δ) and

δ(1(t,u] ⊗Xl) =
Ml∑
m=1

W (1(t,u] ⊗ hm)flm(W (ψ1), . . . ,W (ψn))⊗ xlm

= I(1(t,u] ⊗Xl).

Noting that 1(t,u] ⊗Xl → 1(t,u] ⊗X in Lp(Ω; γ(L2(0, T ; H ), E)) as l → ∞,
the closedness of δ implies that 1(t,u] ⊗X ∈ Dp(δ) and

δ(1(t,u] ⊗Xl) = I(1(t,u] ⊗Xl).

By linearity, it follows that the elementary adapted processes of the form
(12.1) with t0 > 0 are contained in Dp(δ) and that I and δ coincide for such
processes.

To show that this equality extends to all X ∈ LpF(Ω; γ(L2(0, T ; H ), E))
we take a sequence Xn of elementary adapted processes of the above form
converging to X. Since I is a bounded operator from LpF(Ω; γ(L2(0, T ; H ), E))
into Lp(Ω;E), it follows that δ(Xn) = I(Xn) → I(X) as n → ∞. The fact
that δ is closed implies that X ∈ Dp(δ) and δ(X) = I(X). �
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12.2 A Clark-Ocone formula

Our next aim is to prove that the space LpF(Ω; γ(L2(0, T ; H ), E)), which
has been introduced in the previous section, is a complemented subspace of
Lp(Ω; γ(L2(0, T ; H ), E)). For this purpose we need a number of auxiliary re-
sults. We refer to Section 5.1 for the definition of the notion of γ-boundedness
and the notation γ(T ).

Proposition 12.7. Let T be a γ-bounded subset of L(E,F ) and let H be a
separable real Hilbert space. For each T ∈ T let T̃ ∈ L(γ(H,E), γ(H,F )) be
defined by T̃R := T ◦R. The collection T̃ = {T̃ : T ∈ T } is γ-bounded, with
γ(T̃ ) = γ(T ).

Proof. Let (γj)j≥1 and (γ̃j)j≥1 be two sequences of independent standard
Gaussian random variables, on probability spaces (Ω,F ,P) and (Ω̃, F̃ , P̃) re-
spectively. By the Fubini theorem,

E
∥∥∥ n∑
j=1

γj T̃jRj

∥∥∥2

γ(H,F )
= EẼ

∥∥∥ ∞∑
i=1

γ̃i

n∑
j=1

γjTjRjhi

∥∥∥2

F

= ẼE
∥∥∥ n∑
j=1

γjTj

∞∑
i=1

γ̃iRjhi

∥∥∥2

F

≤ γ2(T )ẼE
∥∥∥ n∑
j=1

γj

∞∑
i=1

γ̃iRjhi

∥∥∥2

E

= γ2(T )EẼ
∥∥∥ ∞∑
i=1

γ̃i

n∑
j=1

γjRjhi

∥∥∥2

E

= γ2(T )E
∥∥∥ n∑
j=1

γjRj

∥∥∥2

γ(H,E)
.

This proves the inequality γ(T̃ ) ≤ γ(T ). The reverse inequality holds triv-
ially. �

The next proposition is a result by Bourgain [17], known as the vector-
valued Stein inequality. We refer to [36, Proposition 3.8] for a detailed proof.

Proposition 12.8. Let E be a UMD space and let (Ft)t∈[0,T ] be a filtration on
(Ω,F ,P). For all 1 < p <∞ the conditional expectations {E(·|Ft) : t ∈ [0, T ]}
define a γ-bounded set in L(Lp(Ω;E)).

We will use a multiplier result due to Kalton and Weis [90], which has
already been stated in Proposition 5.16. This time we need a slightly more
general version, which is stated below for the convenience of the reader. In
its formulation we make the observation that every step function f : (0, T )→
γ(H , E) defines an element Rg ∈ γ(L2(0, T ; H ), E) by the formula
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Rfφ :=
∫ T

0

f(t)φ(t) dt.

Since Rf determines f uniquely almost everywhere, in what follows we shall
always identify Rf and f .

Proposition 12.9. Let E and F be real Banach spaces and let M : (0, T )→
L(E,F ) have γ-bounded range {M(t) : t ∈ (0, T )} =: M . Assume that
for all x ∈ E, t 7→ M(t)x is strongly measurable. Then the mapping M :
f 7→ [t 7→M(t)f(t)] extends to a bounded operator from γ(L2(0, T ; H ), E) to
γ(L2(0, T ; H ), F ) of norm ‖M‖ ≤ γ(M ).

Here we identified M(t) ∈ L(E,F ) with M̃(t) ∈ L(γ(H , E), γ(H , F )) as in
Proposition 12.7.

The next result is taken from [134].

Proposition 12.10. Let H be a separable real Hilbert space and let 1 ≤ p <
∞. Then f 7→ [h 7→ f(·)h] defines an isomorphism of Banach spaces

Lp(Ω; γ(H,E)) ' γ(H,Lp(Ω;E)).

After these preparations we are ready to state the result announced above.
We fix a filtration F = (Ft)t∈[0,T ] and define, for step functions f : (0, T ) →
γ(H , Lp(Ω;E)),

(PFf)(t) := E(f(t)|Ft), (12.2)

where E(·|Ft) is considered as a bounded operator acting on γ(H , Lp(Ω;E))
as in Proposition 12.7.

Lemma 12.11. Let E be a UMD space, and let 1 < p, q <∞ satisfy 1
p+ 1

q = 1.

(i) PF extends to a bounded operator on γ(L2(0, T ; H ), Lp(Ω;E)).
(ii) As a bounded operator on Lp(Ω; γ(L2(0, T ; H ), E)), PF is a projection

onto the subspace LpF(Ω; γ(L2(0, T ; H ), E)).
(iii) For X ∈ Lp(Ω; γ(L2(0, T ; H ), E)) and Y ∈ Lq(Ω; γ(L2(0, T ; H ), E∗))

we have
E〈X,PFY 〉 = E〈PFX,Y 〉.

(iv) For all X ∈ Lp(Ω; γ(L2(0, T ; H ), E)) we have EPFX = EX.

Proof. (i): From Propositions 12.7 and 12.8 we infer that the collection of con-
ditional expectations {E(·|Ft) : t ∈ [0, T ]} is γ-bounded in L(γ(H , Lp(Ω;E))).
The boundedness of PF then follows from Proposition 12.9. For step functions
f : (0, T ) → γ(H , Lp(Ω;E)) it is clear from (12.2) that P 2

F f = PFf , which
means that PF is a projection.

(ii): By the identification of Proposition 12.10, PF acts as a bounded pro-
jection in the space Lp(Ω; γ(L2(0, T ; H ), E)). For elementary adapted pro-
cesses X ∈ Lp(Ω; γ(L2(0, T ; H ), E)) we have PFX = X, which implies that
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the range of PF contains LpF(Ω; γ(L2(0, T ; H ), E)). To prove the converse
inclusion we fix a step function X : (0, T ) → γ(H , Lp(Ω;E)) and observe
that PFX is adapted in the sense that (PFX)(t) is strongly Ft-measurable
for every t ∈ [0, T ]. As is shown in [134, Proposition 2.12], this implies that
PFX ∈ LpF(Ω; γ(L2(0, T ; H ), E)). By density it follows that the range of PF
is contained in LpF(Ω; γ(L2(0, T ; H ), E)).

(iii): Keeping in mind the identification of Proposition 12.10, for step func-
tions with values in the finite rank operators from H to E this follows from
(12.2) by elementary computation. The result then follows from a density
argument.

(iv): Identifying a step function f : (0, T ) → γ(H , Lp(Ω;E)) with the
associated operator in γ(L2(0, T ; H ), Lp(Ω;E)) and viewing E as a bounded
operator from γ(L2(0, T ; H ), Lp(Ω;E)) to γ(L2(0, T ; H ), E), by (12.2) we
have

EPFf(t) = EE(f(t)|Ft) = Ef(t).

Thus EPFf = Ef for all step functions f : (0, T ) → γ(H , Lp(Ω;E)), and
hence for all f ∈ γ(L2(0, T ; H ), Lp(Ω;E)) by density. The result now follows
by an application of Proposition 12.10. �

Now let F = (Ft)t∈[0,T ] be the augmented filtration generated by WH .
It has been proved in [134, Theorem 4.7] that if E is a UMD space and
1 < p <∞, and if F ∈ Lp(Ω;E) is FT -measurable, then there exists a unique
X ∈ LpF(Ω; γ(L2(0, T ; H ), E)) such that

F = E(F ) + I(X).

The following two results give an explicit expression for X. They extend the
classical Clark-Ocone formula and its Hilbert space extension to UMD spaces.

Theorem 12.12 (Clark-Ocone representation, first Lp-version). Let E
be a UMD space and let 1 < p < ∞. If F ∈ D1,p(Ω;E) is FT -measurable,
then

F = E(F ) + I(PF(DF )).

Moreover, PF(DF ) is the unique Y ∈ LpF(Ω; γ(L2(0, T ; H ), E)) satisfying F =
E(F ) + I(Y ).

Proof. We may assume that E(F ) = 0.
Let X ∈ LpF(Ω; γ(L2(0, T ; H ), E)) be such that F = I(X) = δ(X). Let

1
p + 1

q = 1, and let Y ∈ Lq(Ω; γ(L2(0, T ; H ), E∗)) be arbitrary. By Lemma
12.11, Theorem 12.6, and Lemma 12.4 we obtain

E〈PF(DF ), Y 〉 = E〈DF,PFY 〉 = E〈F, δ(PFY )〉
= E〈δ(X), δ(PFY )〉 = E〈I(X), I(PFY )〉
= E〈X,PFY 〉 = E〈PFX,Y 〉 = E〈X,Y 〉.



242 12 The Clark-Ocone Formula

Since this holds for all Y ∈ Lq(Ω; γ(L2(0, T ; H ), E∗)), it follows that X =
PF(DF ). The uniqueness of PF(DF ) follows from the injectivity of I as a
bounded linear operator from LpF(Ω; γ(L2(0, T ; H ), E)) to Lp(Ω,FT ). �

With a little extra effort we can prove a bit more:

Theorem 12.13 (Clark-Ocone representation, second Lp-version). Let
E be a UMD space and let 1 < p <∞. The operator PF◦D has a unique exten-
sion to a bounded operator from Lp(Ω,FT ;E) to LpF(Ω; γ(L2(0, T ; H ), E)),
and for all F ∈ Lp(Ω,FT ;E) we have the representation

F = E(F ) + I((PF ◦D)F ).

Moreover, (PF ◦ D)F is the unique Y ∈ LpF(Ω; γ(L2(0, T ; H ), E)) satisfying
F = E(F ) + I(Y ).

Proof. It follows from Theorem 12.12 that F 7→ I((PF◦D)F ) extends uniquely
to a bounded operator on Lp(Ω,FT ;E), since it equals F 7→ F −E(F ) on the
dense subspace D1,p(Ω,FT ;E). The proof is finished by recalling that I is an
isomorphism from LpF(Ω; γ(L2(0, T ; H ), E)) onto its range in Lp(Ω,FT ). �

12.3 Extension to L1

We continue with an extension of Theorem 12.13 to random variables in the
space L1(Ω,FT ;E). As before, F = (Ft)t∈[0,T ] is the augmented filtration
generated by the H -cylindrical Brownian motion WH .

We denote by L0(Ω;F ) the vector space of all strongly measurable random
variables with values in the Banach space F , identifying random variables that
are equal almost surely. Endowed with the metric

d(X,Y ) = E(‖X − Y ‖ ∧ 1),

L0(Ω;F ) is a complete metric space, and we have limn→∞Xn = X in
L0(Ω;F ) if and only if limn→∞Xn = X in measure in F .

We let L0(Ω; γ(L2(0, T ; H ), E)) denote the closure of the elementary
adapted processes in L0

F(Ω; γ(L2(0, T ; H ), E)). By the results of [134], the
stochastic integral I has a unique extension to a linear homeomorphism from
L0

F(Ω; γ(L2(0, T ; H ), E)) onto its image in L0(Ω,FT ;E).

Theorem 12.14 (Clark-Ocone representation, L1-version). Let E be a
UMD space. The operator PF ◦ D has a unique extension to a continuous
linear operator from L1(Ω,FT ;E) to L0

F(Ω; γ(L2(0, T ; H ), E)), and for all
F ∈ L1(Ω,FT ;E) we have the representation

F = E(F ) + I((PF ◦D)F ).

Moreover, (PF ◦ D)F is the unique element Y ∈ L0
F(Ω; γ(L2(0, T ; H ), E))

satisfying F = E(F ) + I(Y ).
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Proof. We shall use the process ξX : (0, T ) × Ω → γ(L2(0, T ; H ), E) associ-
ated with a strongly measurable random variable X : Ω → γ(L2(0, T ; H ), E),
defined by

(ξX(t, ω))f := (X(ω))(1[0,t]f), f ∈ L2(0, T ; H ).

Some properties of this process have been studied in [134, Section 4].
Let (Fn)n≥1 be a sequence of FT -measurable random variables in S (Ω)⊗

E which is Cauchy in L1(Ω,FT ;E). By [134, Lemma 5.4] there exists a con-
stant C ≥ 0, depending only on E, such that for all δ > 0 and ε > 0 and all
m,n ≥ 1,

P
(
‖PF(DFn −DFm)‖γ(L2(0,T ;H ),E) > ε

)
≤ Cδ2

ε2
+ P

(
sup
t∈[0,T ]

‖I(ξPF(DFn−DFm)(t))‖ ≥ δ
)

(∗)
=

Cδ2

ε2
+ P

(
sup
t∈[0,T ]

‖E(Fn − Fm|Ft)− E(Fn − Fm)‖ ≥ δ
)

(∗∗)
≤ Cδ2

ε2
+

1
δ

E‖Fn − Fm − E(Fn − Fm)‖.

In this computation, (∗) follows from Theorem 12.12 which gives

E(F |Ft)− E(F ) = E
(
I(PFDF )

∣∣Ft) = E
(
I(ξPFDF (T ))

∣∣Ft) = I(ξPFDF (t)).

The estimate (∗∗) follows from Doob’s maximal inequality. Since the right-
hand side in the above computation can be made arbitrarily small, this proves
that (PF(DFn))n≥1 is Cauchy in measure in γ(L2(0, T ; H ), E).

For F ∈ L1(Ω,FT ;E) this permits us to define

(PF ◦D)F := lim
n→∞

PF(DFn),

where (Fn)n≥1 is any sequence of FT -measurable random variables in S (Ω)⊗
E satisfying limn→∞ Fn = F in L1(Ω,FT ;E). It is easily checked that this
definition is independent of the approximation sequence. The resulting lin-
ear operator PF ◦ D has the stated properties. This time we use the fact
that I is a homeomorphism from L0

F(Ω; γ(L2(0, T ; H ), E)) onto its image in
L0(Ω,FT ;E); this also gives the uniqueness of (PF ◦D)F . �
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18. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions
dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973,
North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
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42. A. B. Cruzeiro, Équations différentielles sur l’espace de Wiener et formules
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93. F. Kühnemund and J. M. A. M. van Neerven, A Lie-Trotter product for-
mula for Ornstein-Uhlenbeck semigroups in infinite dimensions, J. Evol. Equ.
4 (2004), no. 1, 53–73.

94. P. C. Kunstmann and L. Weis, Maximal Lp-regularity for parabolic equa-
tions, Fourier multiplier theorems and H∞-functional calculus, Functional an-
alytic methods for evolution equations, Lecture Notes in Math., vol. 1855,
Springer, Berlin, 2004, pp. 65–311.
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103. Z. M. Ma and M. Röckner, Introduction to the theory of (nonsymmetric)
Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992.

104. J. Maas, Invariance of closed convex sets under Wasserstein gradient flows,
in preparation.

105. J. Maas, Malliavin calculus and decoupling inequalities in Banach spaces,
arXiv: 0801.2899v2 [math.FA], submitted for publication.

106. J. Maas, Wasserstein gradient flows in infinite dimensions, in preparation.
107. J. Maas and J. M. A. M. van Neerven, Boundedness of Riesz transforms

for elliptic operators on abstract Wiener spaces, arXiv: 0804.1432 [math.FA],
submitted for publication.

108. J. Maas and J. M. A. M. van Neerven, On analytic Ornstein-Uhlenbeck
semigroups in infinite dimensions, Archiv Math. (Basel) 89 (2007), 226–236.



References 251

109. J. Maas and J. M. A. M. van Neerven, A Clark-Ocone formula in UMD
Banach spaces, Electron. Commun. Probab. 13 (2008), 151–164.

110. J. Maas and J. M. A. M. van Neerven, On the domain of non-symmetric
Ornstein-Uhlenbeck operators in Banach spaces, Infin. Dimens. Anal. Quantum
Probab. Relat. Top. 11 (2008), 603–626.

111. P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, Pro-
ceedings of the International Symposium on Stochastic Differential Equations
(Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976) (New York), Wiley, 1978,
pp. 195–263.

112. P. Malliavin and D. Nualart, Quasi-sure analysis and Stratonovich an-
ticipative stochastic differential equations, Probab. Theory Related Fields 96
(1993), no. 1, 45–55.

113. G. Mauceri and S. Meda, BMO and H1 for the Ornstein-Uhlenbeck operator,
J. Funct. Anal. 252 (2007), no. 1, 278–313.

114. G. Mauceri and L. Noselli, Riesz transforms for a non-symmetric Ornstein-
Uhlenbeck semigroup, Semigroup Forum 77 (2008), no. 3, 380–398.

115. E. Mayer-Wolf and M. Zakai, The divergence of Banach space valued ran-
dom variables on Wiener space, Probab. Theory Related Fields 132 (2005),
no. 2.

116. E. Mayer-Wolf and M. Zakai, Corrigendum to: “The Clark-Ocone formula
for vector valued Wiener functionals” [J. Funct. Anal. 229 (2005), no. 1, 143–
154.], J. Funct. Anal. 254 (2008), no. 7, 2020–2021.

117. E. Mayer-Wolf and M. Zakai, Erratum: “The divergence of Banach space
valued random variables on Wiener space” [Probab. Theory Related Fields 132
(2005), no. 2, 291–320.], Probab. Theory Related Fields 140 (2008), no. 3-4,
631–633.

118. R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128
(1997), no. 1, 153–179.

119. T. R. McConnell and M. S. Taqqu, Decoupling inequalities for multilinear
forms in independent symmetric random variables, Ann. Probab. 14 (1986),
no. 3, 943–954.

120. T. R. McConnell and M. S. Taqqu, Decoupling of Banach-valued multilin-
ear forms in independent symmetric Banach-valued random variables, Probab.
Theory Related Fields 75 (1987), no. 4, 499–507.

121. A. McIntosh, On the comparability of A1/2 and A∗1/2, Proc. Amer. Math.
Soc. 32 (1972), 430–434.

122. A. McIntosh, Operators which have an H∞ functional calculus, Miniconfer-
ence on operator theory and partial differential equations (North Ryde, 1986),
Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ.,
Canberra, 1986, pp. 210–231.

123. A. McIntosh and A. Yagi, Operators of type ω without a bounded H∞ func-
tional calculus, Miniconference on Operators in Analysis (Sydney, 1989), Proc.
Centre Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., Canberra,
1990, pp. 159–172.

124. G. Metafune, D. Pallara, and E. Priola, Spectrum of Ornstein-Uhlenbeck
operators in Lp spaces with respect to invariant measures, J. Funct. Anal. 196
(2002), no. 1, 40–60.

125. G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt, The domain of
the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure, Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 2, 471–485.



252 References

126. P.-A. Meyer, Note sur les processus d’Ornstein-Uhlenbeck, Seminar on Proba-
bility, XVI, Lecture Notes in Math., vol. 920, Springer, Berlin, 1982, pp. 95–133.

127. P.-A. Meyer, Quelques résultats analytiques sur le semi-groupe d’Ornstein-
Uhlenbeck en dimension infinie, Theory and application of random fields (Ban-
galore, 1982), Lecture Notes in Control and Inform. Sci., vol. 49, Springer,
Berlin, 1983, pp. 201–214.

128. P.-A. Meyer, Transformations de Riesz pour les lois gaussiennes, Seminar on
probability, XVIII, Lecture Notes in Math., vol. 1059, Springer, Berlin, 1984,
pp. 179–193.

129. B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc.
139 (1969), 243–260.

130. J. M. A. M. van Neerven, Gaussian sums in Banach spaces and γ-
radonifying operators, TU Delft Seminar notes, (2003), available online at
http://fa.its.tudelft.nl/seminar/seminar2002_2003/seminar.pdf.

131. J. M. A. M. van Neerven, Stochastic evolution equations, Internet Seminar
lecture notes, (2008), available at http://fa.its.tudelft.nl/~neerven.

132. J. M. A. M. van Neerven, Nonsymmetric Ornstein-Uhlenbeck semigroups in
Banach spaces, J. Funct. Anal. 155 (1998), no. 2, 495–535.

133. J. M. A. M. van Neerven, Second quantization and the Lp-spectrum of
nonsymmetric Ornstein-Uhlenbeck operators, Infin. Dimens. Anal. Quantum
Probab. Relat. Top. 8 (2005), no. 3, 473–495.

134. J. M. A. M. van Neerven, M. C. Veraar, and L. Weis, Stochastic inte-
gration in UMD Banach spaces, Annals Probab. 35 (2007), 1438–1478.

135. J. M. A. M. van Neerven and L. Weis, Stochastic integration of functions
with values in a Banach space, Studia Math. 166 (2005), no. 2, 131–170.

136. J. M. A. M. van Neerven and L. Weis, Stochastic integration of operator-
valued functions with respect to Banach space-valued Brownian motion, Poten-
tial Anal. 29 (2008), no. 1, 65–88.

137. E. Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211–227.
138. D. Nualart, The Malliavin calculus and related topics, second ed., Probability

and its Applications, Springer-Verlag, 2006.
139. D. Ocone, Malliavin’s calculus and stochastic integral representations of func-

tionals of diffusion processes, Stochastics 12 (1984), no. 3-4, 161–185.
140. F. Otto, The geometry of dissipative evolution equations: the porous medium

equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174.
141. E. M. Ouhabaz, Analysis of heat equations on domains, London Mathematical

Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ,
2005.
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Summary

Analysis of Infinite Dimensional Diffusions

This thesis is concerned with analytic aspects of stochastic differential equa-
tions in infinite dimensional state spaces. Such equations provide a mathemat-
ical description of various phenomena in physics, biology, finance, and other
fields of science.

Part I of this thesis contains a study of operators which arise as infinitesi-
mal generators of transition semigroups associated with stochastic differential
equations in Banach spaces. The focus is on a class of elliptic differential oper-
ators on Wiener spaces, for which a detailed analysis is presented in suitable
Lp-spaces. The main results are Lp-estimates and domain characterisations
for the elliptic operators and their square roots, which generalise the classical
Meyer inequalities. As an application, it is shown that the boundedness of the
Riesz transform is preserved under Lp-second quantisation of analytic Hilbert
space contraction semigroups. The methods are analytic in spirit with a proba-
bilistic flavour, and build on recent advances in operator theory, in particular
the holomorphic functional calculus for sectorial operators and randomised
boundedness of operators on Banach spaces.

The underlying framework is inspired by the theory of perturbed Hodge-
Dirac operators, which provides a unified setting for various problems in
harmonic analysis including the Kato square root problem. In this setting,
randomised gradient bounds for transition semigroups and Littlewood-Paley-
Stein inequalities for the associated generators are obtained.

By duality, the transition semigroups studied in Part I of this thesis induce
a flow in the space of probability measures, representing the evolution of the
law of the underlying stochastic process. In Part II of this thesis a framework
is developed for the study of these evolutions as gradient flows associated
with entropy functionals on the Wasserstein space over an infinite dimensional
Banach space.



260 Summary

For this purpose a Wasserstein distance for probability measures on a
Banach space is considered, where the underlying metric is induced by the
reproducing kernel Hilbert space of the noise in the stochastic equation.

It is proved that a continuity equation can be associated with smooth
curves of probability measures, which allows for the introduction of velocity
fields associated with smooth curves and subdifferentials of functionals, in the
spirit of Riemannian geometry.

For functionals satisfying appropriate displacement convexity conditions
it is shown that the metric formulation of a gradient flow in the sense of an
evolution variational inequality is equivalent to a differential geometric formu-
lation in the sense of the Riemannian structure. Under natural assumptions
on the reproducing kernel Hilbert spaces it is proved that entropy functionals
associated with Gaussian measures are displacement convex. The correspond-
ing gradient flows are shown to satisfy Fokker-Planck equations involving the
generators considered in Part I of this thesis.

The Malliavin calculus is a differential calculus on an infinite dimensional
space endowed with a Gaussian measure. The scalar-valued theory extends in
a natural way to Hilbert spaces, but the straightforward Banach space-valued
extension breaks down. In Part III of this thesis a Banach space-valued theory
having most of the good features of the scalar theory is developed. This exten-
sion relies on the systematic use of radonifying operators. Among the obtained
results are analogues of the Wiener-Itô isometry, two-sided Lp-estimates for
multiple stochastic integrals, and boundedness of the Malliavin derivative on
each vector-valued Wiener-Itô chaos. Some results require geometric assump-
tions on the Banach space under consideration, such as the Clark-Ocone rep-
resentation formula for random variables, which holds if the Banach space has
the so-called UMD property.



Samenvatting

Analyse van Oneindig-Dimensionale Diffusies

Dit proefschrift is gewijd aan analytische aspecten van stochastische differen-
tiaalvergelijkingen in oneindig-dimensionale toestandsruimten. Zulke verge-
lijkingen geven een wiskundige beschrijving van diverse verschijnselen in de
natuurkunde, biologie, econometrie, en andere delen van de wetenschap.

In deel I van dit proefschrift worden operatoren bestudeerd die optre-
den als generatoren van overgangshalfgroepen behorende bij stochastische
differentiaalvergelijkingen in Banachruimten. De nadruk ligt op een klasse
van elliptische differentiaaloperatoren op Wienerruimten, waarvoor een gede-
tailleerde analyse in zekere Lp-ruimten wordt gepresenteerd. De hoofdresul-
taten zijn Lp-afschattingen en domeinkarakteriseringen voor de elliptische
operatoren en hun wortels, die de klassieke Meyer-ongelijkheden generaliseren.
Als toepassing wordt bewezen dat de begrensdheid van de Riesz-transformatie
behouden blijft onder Lp-tweede quantisatie van analytische contractiehalf-
groepen op Hilbertruimten. De gebruikte methoden zijn analytisch met een
probabilistische component, en borduren voort op recente ontwikkelingen in
de operatorentheorie, in het bijzonder de holomorfe functionaalcalculus voor
sectoriële operatoren en gerandomiseerde begrensdheid van operatoren op
Banachruimten.

De onderliggende structuur maakt gebruik van de theorie van verstoor-
de Hodge-Dirac-operatoren. Deze theorie verschaft een algemeen kader voor
verschillende problemen in de harmonische analyse, waaronder het wortelpro-
bleem van Kato. In deze context worden gerandomiseerde gradient-afschattin-
gen voor overgangshalfgroepen en Littlewood-Paley-Stein-ongelijkheden voor
de bijbehorende generatoren bewezen.

De overgangshalfgroepen die bestudeerd zijn in Deel I geven aanleiding
tot een stroming in de ruimte van kansmaten, die de evolutie van de verde-
ling van het onderliggende stochastische proces beschrijft. In Deel II van dit
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proefschrift wordt een kader ontwikkeld waarbinnen deze evoluties beschreven
kunnen worden als gradient-stromingen behorende bij entropie-functionalen
op de Wassersteinruimte over een oneindig-dimensionale Banachruimte.

In dit kader wordt een Wassersteinafstand voor kansmaten op een Ba-
nachruimte beschouwd, waarbij de onderliggende metriek bepaald wordt door
de reproducerende kern Hilbertruimte van de ruis in de stochastische verge-
lijking. Er wordt bewezen dat er een continuïteitsvergelijking kan worden
toegevoegd aan een pad van kansmaten, die het mogelijk maakt snelheids-
velden voor gladde paden en subdifferentialen voor functionalen in te voeren.

Onder geschikte convexiteits-aannamen wordt bewezen dat de metrische
formulering van een gradient-stroming in de zin van een evolutie-variationele
ongelijkheid equivalent is aan een differentiaalgeometrische formulering in de
zin van de Riemannse structuur. Onder natuurlijke voorwaarden op de re-
producerende kern Hilbertruimten wordt bewezen dat entropie-functionalen
voor een Gaussmaat verplaatsings-convex zijn. Er wordt aangetoond dat de
bijbehorende gradient-stromingen voldoen aan Fokker-Planck-vergelijkingen,
waarin de generatoren die in Deel I van dit proefschrift beschouwd worden
een rol spelen.

De Malliavincalculus is een differentiaalrekening op een oneindig-dimensio-
nale ruimte voorzien van een Gaussmaat. De scalaire theorie generaliseert op
natuurlijke wijze naar Hilbertruimten, maar er bestaat geen voor de hand
liggende uitbreiding naar Banachruimten. In Deel III van dit proefschrift
wordt een Banachruimte-waardige theorie ontwikkeld, die de meeste goede
eigenschappen van de scalaire theorie behoudt. In deze uitbreiding wordt sys-
tematisch gebruik gemaakt van radonificerende operatoren. Onder de verkre-
gen resultaten zijn een analogon van de Wiener-Itô-isometrie, tweezijdige Lp-
afschattingen voor stochastische integralen en begrensdheid van de Malliavin-
afgeleide op elke vectorwaardige Wiener-Itô-chaos. Voor sommige resultaten
zijn geometrische aannamen op de Banachruimte vereist. Een voorbeeld is de
Clark-Ocone formule die wordt bewezen voor Banachruimten met de zoge-
naamde UMD-eigenschap.
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